论文标题

随机张量网络中的反射熵II:规范纯化的拓扑指数

Reflected entropy in random tensor networks II: a topological index from the canonical purification

论文作者

Akers, Chris, Faulkner, Thomas, Lin, Simon, Rath, Pratik

论文摘要

在Arxiv:2112.09122中,我们在随机张量网络中分析了反射的熵($ S_R $),其拟议二元性在全息理论中提出的双重性,以$ s_r = 2 \ frac {ew} {4g} $。在本文中,我们通过分析一个由两个随机张量的链组成的简单网络来发现这种双重性的更多细节。此设置建模了多孔虫洞。我们表明,反射的纠缠光谱由templeley-lieb(TL)代数的表示理论控制。在全息图动机的半古典限制中,频谱以与TL代数不同不可减至表示相关的超选择性扇区的形式,并由拓扑索引$ k \ in \ Mathbb {z} _ {\ geq 0} $标记。每个扇区都会有助于反射的熵,金额为$ 2K \ frac {ew} {4g} $,其概率加权。我们通过固定区,高基因多孔孔($ 2K-1 $初始值切片)提供引力解释。这些虫洞出现在规范纯化的重力描述中。我们确认反射的熵全息二元性远离相变。我们还发现,新颖的几何形状具有$ k \ geq 2 $近相变的重要非扰动贡献,从而解决了不连续的过渡中的$ s_r $。除了分析论点外,我们还为结果提供了数值证据。我们评论TL代数之间的联系,II型$ _1 $ von Neumann代数与重力。

In arXiv:2112.09122, we analyzed the reflected entropy ($S_R$) in random tensor networks motivated by its proposed duality to the entanglement wedge cross section (EW) in holographic theories, $S_R=2 \frac{EW}{4G}$. In this paper, we discover further details of this duality by analyzing a simple network consisting of a chain of two random tensors. This setup models a multiboundary wormhole. We show that the reflected entanglement spectrum is controlled by representation theory of the Temperley-Lieb (TL) algebra. In the semiclassical limit motivated by holography, the spectrum takes the form of a sum over superselection sectors associated to different irreducible representations of the TL algebra and labelled by a topological index $k\in \mathbb{Z}_{\geq 0}$. Each sector contributes to the reflected entropy an amount $2k \frac{EW}{4G}$ weighted by its probability. We provide a gravitational interpretation in terms of fixed-area, higher-genus multiboundary wormholes with genus $2k-1$ initial value slices. These wormholes appear in the gravitational description of the canonical purification. We confirm the reflected entropy holographic duality away from phase transitions. We also find important non-perturbative contributions from the novel geometries with $k\geq 2$ near phase transitions, resolving the discontinuous transition in $S_R$. Along with analytic arguments, we provide numerical evidence for our results. We comment on the connection between TL algebras, Type II$_1$ von Neumann algebras and gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源