论文标题
FE的相位稳定性从第一原理:原子自旋动力学以及从头算分子动力学模拟和热力学整合
Phase stability of Fe from first-principles: atomistic spin dynamics coupled with ab initio molecular dynamics simulations and thermodynamic integration
论文作者
论文摘要
材料中第一原理的自由能计算是一项艰巨的任务,可以以高精度预测相位稳定性。通过电子,磁性和振动自由度的相互作用,这些计算在磁性材料中变得复杂。在这项工作中,我们通过通过抗体方法和热力学整合进行相位稳定性计算的可行性和准确性,通过用耦合的原子旋转动力学-Ab启发动态分子动力学(ASD-aimd)模拟磁性和振动相空间,与PRL 121,1255902(2018年)功能理论(DFT)。我们采用方法来计算环境压力在800 k至1800 K的环境压力下的相位稳定性。吉布斯在零压力上的FCC和BCC Fe之间的自由能差异是在零压力上随着温度的函数计算的,在使用ASD-IAMD的DFT水平上,在DFT水平上进行热量差异,在温度下进行热力学在温度上进行热量差异,而在温度下,参考较高的温度较高,高度较高。应力 - 应变变量具有无序的局部力矩(DLM)-AIMD模拟。我们显示了BCC FE的磁性排序温度对$α$至$γ$结构过渡温度的重要性,而$γ$至$δ$转换的重要性是与交换相互作用独立的重现。两种结构之间的Gibbs自由能差位于Calphad估计值的5 MeV/原子之内,并且两个过渡温度都在150 K之内再现。目前的工作铺平了从第一原理中以1 MeV/AtoM的顺序从磁性原理中进行自由能量计算的方法。
The calculation of free energies from first principles in materials is a formidable task which enables the prediction of phase stability with high accuracy; these calculations are complicated in magnetic materials by the interplay of electronic, magnetic, and vibrational degrees of freedom. In this work, we show the feasibility and accuracy of the calculation of phase stability in magnetic systems with ab initio methods and thermodynamic integration by sampling the magnetic and vibrational phase space with coupled atomistic spin dynamics-ab initio molecular dynamics (ASD-AIMD) simulations [Stockem et al., PRL 121, 125902 (2018)], where energies and interatomic forces are calculated with density functional theory (DFT). We employ the method to calculate the phase stability of Fe at ambient pressure from 800 K up to 1800 K. The Gibbs free energy difference between fcc and bcc Fe at zero pressure as a function of temperature is calculated carrying out thermodynamic integration over temperature on the energies at the DFT level from ASD-AIMD, using a reference free energy difference calculated in the paramagnetic state at temperatures much higher than the magnetic transition temperatures with thermodynamic integration over stress-strain variables with disordered local moment (DLM)-AIMD simulations. We show the importance of the magnetic ordering temperature of bcc Fe on the $α$ to $γ$ structural transition temperature, whereas the $γ$ to $δ$ transition is well reproduced independently of the exchange interactions. The Gibbs free energy difference between the two structures is within 5 meV/atom from the CALPHAD estimate, and both transition temperatures are reproduced within 150 K. The present work paves the way to free energy calculations in magnetic materials from first principles with accuracy in the order of 1 meV/atom.