论文标题
Riesz Mane和Birinear Riesz在Métivier组上的意思
Riesz means and bilinear Riesz means on Métivier groups
论文作者
论文摘要
在本文中,我们研究了riesz含义的$ l^{p} $ - $ l^{p_ {1}} \ times l^{p_ {2}} \ rightARROW l^{p} $ birinear riesz in Menear riesz in Mentivier组的界限。 Métivier群体是海森堡组和一般H型组的概括。由于一般的Métivier组仅满足非分类条件并具有高维中心,因此我们必须使用Heisenberg组和H型组的不同方法和技术。
In this paper, we investigate the $L^{p}$-boundedness of the Riesz means and the $L^{p_{1}}\times L^{p_{2}}\rightarrow L^{p}$ boundedness of the bilinear Riesz means on Métivier groups. Métivier groups are generalization of Heisenberg groups and general H-type groups. Because general Métivier groups only satisfy the non-degeneracy condition and have high-dimensional centre, we have to use different methods and techniques from those on Heisenberg groups and H-type groups.