论文标题
无校准的无校准重建,并具有深度学习估计的Espirit地图的均匀采样的多通道MR数据
Calibrationless Reconstruction of Uniformly-Undersampled Multi-Channel MR Data with Deep Learning Estimated ESPIRiT Maps
论文作者
论文摘要
目的:开发一种真正的无校准重建方法,该方法通过深度学习从统一地采样的多通道MR数据中得出Espirit图。方法:Espirit是一种常用的并行成像重建技术,它使用有效代表线圈灵敏度信息的Espirit图从未采样的MR K空间数据构成图像。准确的Espirit图估计需要质量线圈灵敏度校准或自动校准数据。我们提出了一个基于U-NET的深度学习模型,该模型直接从均匀量采样的多渠道多渠道多层MR数据中估算了多通道Espirit图。该模型是使用来自同一MR接收线圈系统的完全采样的多块轴向脑数据集训练的。为了利用适用于每个数据集的主题圈几何参数,该训练在原始位置的Espirit地图上施加了混合损失,以及在标准参考多板轴堆栈中的相应位置。使用公开可用的T1加入的大脑和心脏数据评估该方法的性能。结果:提出的模型可鲁棒地预测均匀采样的K空间数据的多通道杂音图。它们与直接从24个连续的中央k空间线直接计算的参考埃斯普利特图高度可比。此外,即使在高加速度下,它们也会导致出色的Espirit重建性能,通过使用参考Espirit地图表现出与之相似的错误和伪影水平。结论:开发了一种新的深度学习方法,以直接从均匀量采样的MR数据中估算Espirit图。它提出了通过从线圈和协议特定数据中学习的无校准并行成像重建的一般策略。
Purpose: To develop a truly calibrationless reconstruction method that derives ESPIRiT maps from uniformly-undersampled multi-channel MR data by deep learning. Methods: ESPIRiT, one commonly used parallel imaging reconstruction technique, forms the images from undersampled MR k-space data using ESPIRiT maps that effectively represents coil sensitivity information. Accurate ESPIRiT map estimation requires quality coil sensitivity calibration or autocalibration data. We present a U-Net based deep learning model to estimate the multi-channel ESPIRiT maps directly from uniformly-undersampled multi-channel multi-slice MR data. The model is trained using fully-sampled multi-slice axial brain datasets from the same MR receiving coil system. To utilize subject-coil geometric parameters available for each dataset, the training imposes a hybrid loss on ESPIRiT maps at the original locations as well as their corresponding locations within the standard reference multi-slice axial stack. The performance of the approach was evaluated using publicly available T1-weighed brain and cardiac data. Results: The proposed model robustly predicted multi-channel ESPIRiT maps from uniformly-undersampled k-space data. They were highly comparable to the reference ESPIRiT maps directly computed from 24 consecutive central k-space lines. Further, they led to excellent ESPIRiT reconstruction performance even at high acceleration, exhibiting a similar level of errors and artifacts to that by using reference ESPIRiT maps. Conclusion: A new deep learning approach is developed to estimate ESPIRiT maps directly from uniformly-undersampled MR data. It presents a general strategy for calibrationless parallel imaging reconstruction through learning from coil and protocol specific data.