论文标题

学习更好的意图表示,以进行财务开放意图分类

Learning Better Intent Representations for Financial Open Intent Classification

论文作者

Li, Xianzhi, Aitken, Will, Zhu, Xiaodan, Thomas, Stephen W.

论文摘要

随着金融领域NLP技术的最新激增,银行和其他金融实体采用了虚拟代理(VA)来协助客户。该域中VA的一个具有挑战性的问题是确定用户与VA联系的原因,尤其是在VA培训期间意图看不见或开放时。处理开放意图的一种方法是自适应决策边界(ADB)后处理,它从意图表示形式到分开的已知和开放意图学习紧密的决策界限。我们建议将两种用于监督意图表示预训练的方法合并:前缀调整和微调只是大语言模型(LLM)的最后一层。有了这项建议,我们的准确性比以前最新的ADB方法高1.63%-2.07%,用于在银行基准上进行开放意图分类。值得注意的是,我们仅以0.1%额外的可训练参数来补充原始ADB模型。消融研究还确定,我们的方法比整个模型的全面微调产生的结果更好。我们假设我们的发现可以刺激一种新的最佳下游调谐方法,该方法将参数有效调整模块与基本模型层的一部分相结合。

With the recent surge of NLP technologies in the financial domain, banks and other financial entities have adopted virtual agents (VA) to assist customers. A challenging problem for VAs in this domain is determining a user's reason or intent for contacting the VA, especially when the intent was unseen or open during the VA's training. One method for handling open intents is adaptive decision boundary (ADB) post-processing, which learns tight decision boundaries from intent representations to separate known and open intents. We propose incorporating two methods for supervised pre-training of intent representations: prefix-tuning and fine-tuning just the last layer of a large language model (LLM). With this proposal, our accuracy is 1.63% - 2.07% higher than the prior state-of-the-art ADB method for open intent classification on the banking77 benchmark amongst others. Notably, we only supplement the original ADB model with 0.1% additional trainable parameters. Ablation studies also determine that our method yields better results than full fine-tuning the entire model. We hypothesize that our findings could stimulate a new optimal method of downstream tuning that combines parameter efficient tuning modules with fine-tuning a subset of the base model's layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源