论文标题
通过对域概括的隐式区分学习增强
Learning to Augment via Implicit Differentiation for Domain Generalization
论文作者
论文摘要
机器学习模型本质上容易受到训练和测试数据之间的域转移的影响,从而导致新领域的性能不佳。域的概括(DG)旨在通过利用多个源域学习域名模型来克服问题。在本文中,我们提出了一种新型的基于增强的DG方法,称为Auglearn。与现有数据增强方法不同,我们的Auglearn将数据增强模块视为分类模型的超参数,并通过元学习优化模块与模型一起优化。具体而言,在每个训练步骤中,Auglearn(i)将源域将源域分为伪源和伪目标集,(ii)训练增强模块以使增强(合成)图像可以使模型在伪目标集上良好概括的方式。此外,为了克服元学习期间昂贵的二阶梯度计算,我们基于隐式函数定理,为增强模块和分类模型制定了有效的关节训练算法。凭借在时间和频率空间中增强数据的灵活性,Auglearn对三个标准DG基准,PAC,办公室家庭和DG显示了有效性。
Machine learning models are intrinsically vulnerable to domain shift between training and testing data, resulting in poor performance in novel domains. Domain generalization (DG) aims to overcome the problem by leveraging multiple source domains to learn a domain-generalizable model. In this paper, we propose a novel augmentation-based DG approach, dubbed AugLearn. Different from existing data augmentation methods, our AugLearn views a data augmentation module as hyper-parameters of a classification model and optimizes the module together with the model via meta-learning. Specifically, at each training step, AugLearn (i) divides source domains into a pseudo source and a pseudo target set, and (ii) trains the augmentation module in such a way that the augmented (synthetic) images can make the model generalize well on the pseudo target set. Moreover, to overcome the expensive second-order gradient computation during meta-learning, we formulate an efficient joint training algorithm, for both the augmentation module and the classification model, based on the implicit function theorem. With the flexibility of augmenting data in both time and frequency spaces, AugLearn shows effectiveness on three standard DG benchmarks, PACS, Office-Home and Digits-DG.