论文标题
两参数总和标志和相应的准对称函数
Two-parameter sums signatures and corresponding quasisymmetric functions
论文作者
论文摘要
准对称函数最近已在时间序列分析中用作多项式特征,这些特征是不变的,所谓的动态时间扭曲。我们将此概念扩展到由两个参数索引的数据,因此为图像提供了扭曲不变性。我们表明,两参数的准对称函数在某种意义上是完整的,并提供了两参数准剃须的身份。兼容的相关基于输入数据的对角线串联,导致(弱)形式的陈身份。
Quasisymmetric functions have recently been used in time series analysis as polynomial features that are invariant under, so-called, dynamic time warping. We extend this notion to data indexed by two parameters and thus provide warping invariants for images. We show that two-parameter quasisymmetric functions are complete in a certain sense, and provide a two-parameter quasi-shuffle identity. A compatible coproduct is based on diagonal concatenation of the input data, leading to a (weak) form of Chen's identity.