论文标题

SleepMore:通过多设备WiFi感应来推断睡眠时间的规模

SleepMore: Inferring Sleep Duration at Scale via Multi-Device WiFi Sensing

论文作者

Zakaria, Camellia, Yilmaz, Gizem, Mammen, Priyanka, Chee, Michael, Shenoy, Prashant, Balan, Rajesh

论文摘要

配备功能的商业可穿戴跟踪器的可用性可监视睡眠时间和质量,使得更有用的睡眠健康监控应用程序和分析。但是,许多研究报告了通过这些方式在睡眠监测中长期保留用户的挑战。由于现代互联网用户拥有多种移动设备,因此我们的工作探讨了采用无处不在的移动设备和被动WiFi传感技术来预测睡眠持续时间,这是补充长期睡眠监控计划的基本措施。在本文中,我们提出了SleepMore,这是一种基于用户WiFi网络活动的机器学习的准确且易于发挥的睡眠跟踪方法。它首先采用半个性化的随机森林模型,采用无限的折刀差异估计方法来将用户的网络活动行为分类为睡眠和每分钟颗粒状的清醒状态。通过移动平均技术,系统使用这些状态序列来估计用户的夜间睡眠期及其不确定性率。不确定性定量使Sleepmore能够克服可能产生大型预测错误的嘈杂WiFi数据的影响。我们使用涉及46名大学生的一个月用户研究的数据来验证Sleepmore,并与OURA环可穿戴式进行了比较。除了大学校园之外,我们还评估了不同住房概况的非学生使用者的Sleepmore。我们的结果表明,SleepMore与OURA环基线的统计学上无法区分的睡眠统计数据在5%的不确定性率内进行的预测。这些错误的范围在15-28分钟之间,用于确定睡眠时间,确定唤醒时间7-29分钟,证明对先前的工作具有统计学上的显着改善。我们的深入分析解释了错误的来源。

The availability of commercial wearable trackers equipped with features to monitor sleep duration and quality has enabled more useful sleep health monitoring applications and analyses. However, much research has reported the challenge of long-term user retention in sleep monitoring through these modalities. Since modern Internet users own multiple mobile devices, our work explores the possibility of employing ubiquitous mobile devices and passive WiFi sensing techniques to predict sleep duration as the fundamental measure for complementing long-term sleep monitoring initiatives. In this paper, we propose SleepMore, an accurate and easy-to-deploy sleep-tracking approach based on machine learning over the user's WiFi network activity. It first employs a semi-personalized random forest model with an infinitesimal jackknife variance estimation method to classify a user's network activity behavior into sleep and awake states per minute granularity. Through a moving average technique, the system uses these state sequences to estimate the user's nocturnal sleep period and its uncertainty rate. Uncertainty quantification enables SleepMore to overcome the impact of noisy WiFi data that can yield large prediction errors. We validate SleepMore using data from a month-long user study involving 46 college students and draw comparisons with the Oura Ring wearable. Beyond the college campus, we evaluate SleepMore on non-student users of different housing profiles. Our results demonstrate that SleepMore produces statistically indistinguishable sleep statistics from the Oura ring baseline for predictions made within a 5% uncertainty rate. These errors range between 15-28 minutes for determining sleep time and 7-29 minutes for determining wake time, proving statistically significant improvements over prior work. Our in-depth analysis explains the sources of errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源