论文标题

在网络中的异质干扰下学习个人治疗效果

Learning Individual Treatment Effects under Heterogeneous Interference in Networks

论文作者

Zhao, Ziyu, Bai, Yuqi, Kuang, Kun, Xiong, Ruoxuan, Wu, Fei

论文摘要

如今,来自网络观察数据的个体治疗效果的估计正在吸引越来越多的关注。网络场景中的一个主要挑战是违反稳定的单位治疗价值假设(SUTVA),该假设假定单位的治疗分配不会影响他人的结果。在网络数据中,由于干扰,单位的结果不仅受其处理(即直接效应)的影响,而且还受到其他人治疗(即溢出效应)的影响。此外,其他单位的影响始终是异质的(例如,有兴趣相似的朋友对一个人的影响与具有不同兴趣的朋友不同)。在本文中,我们关注在异质干扰下估计个体治疗效果(直接和溢出效应)的问题。为了解决这个问题,我们通过同时学习捕获异质干扰和样品权重以消除网络中复杂的混杂偏见来提出一种新型的双重加权回归(DWR)算法。我们将整个学习过程作为双层优化问题。从理论上讲,我们提出了单个治疗效应估计的概括误差范围。在四个基准数据集上进行的广泛实验表明,所提出的DWR算法优于最先进的方法,用于估计异质干扰下的个体治疗效果。

Estimates of individual treatment effects from networked observational data are attracting increasing attention these days. One major challenge in network scenarios is the violation of the stable unit treatment value assumption (SUTVA), which assumes that the treatment assignment of a unit does not influence others' outcomes. In network data, due to interference, the outcome of a unit is influenced not only by its treatment (i.e., direct effects) but also by others' treatments (i.e., spillover effects). Furthermore, the influences from other units are always heterogeneous (e.g., friends with similar interests affect a person differently than friends with different interests). In this paper, we focus on the problem of estimating individual treatment effects (both direct and spillover effects) under heterogeneous interference. To address this issue, we propose a novel Dual Weighting Regression (DWR) algorithm by simultaneously learning attention weights that capture the heterogeneous interference and sample weights to eliminate the complex confounding bias in networks. We formulate the entire learning process as a bi-level optimization problem. In theory, we present generalization error bounds for individual treatment effect estimation. Extensive experiments on four benchmark datasets demonstrate that the proposed DWR algorithm outperforms state-of-the-art methods for estimating individual treatment effects under heterogeneous interference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源