论文标题

基于结缔组织的新颖性检测

Connective Reconstruction-based Novelty Detection

论文作者

Hashemi, Seyyed Morteza, Aliniya, Parvaneh, Razzaghi, Parvin

论文摘要

检测分布样本是计算机视觉应用程序应用程序的关键任务之一。深度学习的进步使我们能够分析包含无法解释的样本的现实世界数据,从而强调了比以前更多地检测到分发实例的需求。基于GAN的方法由于能够执行分配拟合的能力而被广泛用于解决此问题。但是,它们伴随着训练不稳定性和模式崩溃。我们提出了一种简单而有效的基于重建的方法,该方法避免了增加复杂性,以补偿GAN模型的局限性,同时超过了它们。与以前仅利用重建错误或生成样本的基于重建的作品不同,我们提出的方法同时将它们都包含在检测任务中。我们称之为“连接新颖性检测”的模型具有两个子网,一个自动编码器和一个二进制分类器。自动编码器通过重建积极阶级来了解积极阶级的表示。然后,该模型使用真实和生成的样品创建负面和连接的阳性示例。负面实例是通过操纵真实数据生成的,因此它们的分布接近正类别,以实现分类器的更准确的边界。为了提高检测到重建误差的鲁棒性,通过组合真实和生成的样品来创建连接的正样本。最后,使用连接的正和负示例对二元分类器进行训练。我们证明了对MNIST和CALTECH-256数据集的最新方法的新颖性检测有了显着改善。

Detection of out-of-distribution samples is one of the critical tasks for real-world applications of computer vision. The advancement of deep learning has enabled us to analyze real-world data which contain unexplained samples, accentuating the need to detect out-of-distribution instances more than before. GAN-based approaches have been widely used to address this problem due to their ability to perform distribution fitting; however, they are accompanied by training instability and mode collapse. We propose a simple yet efficient reconstruction-based method that avoids adding complexities to compensate for the limitations of GAN models while outperforming them. Unlike previous reconstruction-based works that only utilize reconstruction error or generated samples, our proposed method simultaneously incorporates both of them in the detection task. Our model, which we call "Connective Novelty Detection" has two subnetworks, an autoencoder, and a binary classifier. The autoencoder learns the representation of the positive class by reconstructing them. Then, the model creates negative and connected positive examples using real and generated samples. Negative instances are generated via manipulating the real data, so their distribution is close to the positive class to achieve a more accurate boundary for the classifier. To boost the robustness of the detection to reconstruction error, connected positive samples are created by combining the real and generated samples. Finally, the binary classifier is trained using connected positive and negative examples. We demonstrate a considerable improvement in novelty detection over state-of-the-art methods on MNIST and Caltech-256 datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源