论文标题

高斯平均测试变得简单

Gaussian Mean Testing Made Simple

论文作者

Diakonikolas, Ilias, Kane, Daniel M., Pensia, Ankit

论文摘要

我们研究以下基本假设检验问题,我们将其称为高斯平均测试。给定I.I.D. $ \ mathbb {r}^d $上的分布$ p $的样品,任务是在以下情况下以很高的概率区分:(i)$ p $是标准高斯分布,$ \ nathcal {n}(n}(0,i_d)$和(ii _d)$ p $ p $是高斯$ \ Mathcal cov $ \ Mathcal $ for for for for for for for for for for。且平均$μ\ in \ mathbb {r}^d $满足$ \ | | | _2 \geqε$。最近的工作给出了此测试问题的算法,最佳样本复杂性为$θ(\ sqrt {d}/ε^2)$。以前的算法及其分析都非常复杂。在这里,我们通过一页分析给出了一种极其简单的高斯平均测试算法。我们的算法是最佳样品,并在样本线性时间内运行。

We study the following fundamental hypothesis testing problem, which we term Gaussian mean testing. Given i.i.d. samples from a distribution $p$ on $\mathbb{R}^d$, the task is to distinguish, with high probability, between the following cases: (i) $p$ is the standard Gaussian distribution, $\mathcal{N}(0,I_d)$, and (ii) $p$ is a Gaussian $\mathcal{N}(μ,Σ)$ for some unknown covariance $Σ$ and mean $μ\in \mathbb{R}^d$ satisfying $\|μ\|_2 \geq ε$. Recent work gave an algorithm for this testing problem with the optimal sample complexity of $Θ(\sqrt{d}/ε^2)$. Both the previous algorithm and its analysis are quite complicated. Here we give an extremely simple algorithm for Gaussian mean testing with a one-page analysis. Our algorithm is sample optimal and runs in sample linear time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源