论文标题
从2D半导体光电剥离中提取热载体
Hot carrier extraction from 2D semiconductor photoelectrodes
论文作者
论文摘要
基于热载体的能源转换系统可以使用完全热效的``酷''携带者来驱动传统太阳能技术的效率或驱动光化学反应的效率两倍,但是当前的策略需要昂贵的多开关体系结构。利用光电化学和原位瞬态吸收光谱测量的前所未有的组合,我们证明了在概念验证的光电型太阳能细胞中,在施加的偏置中,超快(<50 fs)热激发剂和免费的载体提取物,由地球效果,潜在的,潜在的,潜在的,潜在的,潜在的且潜在的廉价单层(ML)。我们的方法通过将ML-MOS2与电子选择的固体接触和一个孔选择性电解质接触搭配,促进了1 cm^2区域的超薄7ÅCharch的运输距离。我们对激子状态空间分布的理论研究表明,位于外围S原子上的热激子状态与邻近接触之间的电子耦合可能有助于超快电荷转移。我们的工作描述了未来的2D半导体设计策略,用于在超薄光伏和太阳能燃料应用中实施实施。
Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, ``cool'' carriers, but current strategies require expensive multi-junction architectures. Using an unprecedented combination of photoelectrochemical and in situ transient absorption spectroscopy measurements, we demonstrate ultrafast (<50 fs) hot exciton and free carrier extraction under applied bias in a proof-of-concept photoelectrochemical solar cell made from earth-abundant and potentially inexpensive monolayer (ML) MoS2. Our approach facilitates ultrathin 7Åcharge transport distances over 1 cm^2 areas by intimately coupling ML-MoS2 to an electron-selective solid contact and a hole-selective electrolyte contact. Our theoretical investigations of the spatial distribution of exciton states suggest greater electronic coupling between hot exciton states located on peripheral S atoms and neighboring contacts likely facilitates ultrafast charge transfer. Our work delineates future 2D semiconductor design strategies for practical implementation in ultrathin photovoltaic and solar fuels applications.