论文标题
$ \ texttt {红树林} $:从合并树学习星系属性
$\texttt{Mangrove}$: Learning Galaxy Properties from Merger Trees
论文作者
论文摘要
有效地将Baryonic特性映射到暗物质上是天体物理学的主要挑战。尽管半分析模型(SAM)和流体动力学模拟在跨宇宙学上显着的体积繁殖星系可观察到的出现方面取得了令人印象深刻的进步,但这些方法仍然需要大量的计算时间,这代表了许多应用的障碍。图神经网络(GNN)最近被证明是学习物理关系的自然选择。天体物理学中发现的最固有的图形结构中,是编码暗物质光环演化的暗物质合并树。在本文中,我们介绍了一个新的,基于图的仿真框架,$ \ texttt {红树林} $,并表明它可以模拟银河系恒星质量,冷气质量和金属性,瞬时和时间平移的恒星形成速率和黑洞质量 - 由sam-的均值较低的$ sim bover/sim sim bover/sim bover/sim bover/sim bover/sim bover/sim bover/sim bover hyt $ s $ s $ conf/sim sypc cypc sim pys(75)^75 MOST(75)(75 MOTC)(75) 40秒,比SAM快4个数量级。我们表明,$ \ texttt {Mangrove} $允许量化星系属性对合并历史记录的依赖性。我们将结果与该领域的当前状态进行比较,并显示出所有目标属性的显着改善。 $ \ texttt {红树林} $公开可用。
Efficiently mapping baryonic properties onto dark matter is a major challenge in astrophysics. Although semi-analytic models (SAMs) and hydrodynamical simulations have made impressive advances in reproducing galaxy observables across cosmologically significant volumes, these methods still require significant computation times, representing a barrier to many applications. Graph Neural Networks (GNNs) have recently proven to be the natural choice for learning physical relations. Among the most inherently graph-like structures found in astrophysics are the dark matter merger trees that encode the evolution of dark matter halos. In this paper we introduce a new, graph-based emulator framework, $\texttt{Mangrove}$, and show that it emulates the galactic stellar mass, cold gas mass and metallicity, instantaneous and time-averaged star formation rate, and black hole mass -- as predicted by a SAM -- with root mean squared error up to two times lower than other methods across a $(75 Mpc/h)^3$ simulation box in 40 seconds, 4 orders of magnitude faster than the SAM. We show that $\texttt{Mangrove}$ allows for quantification of the dependence of galaxy properties on merger history. We compare our results to the current state of the art in the field and show significant improvements for all target properties. $\texttt{Mangrove}$ is publicly available.