论文标题

基于归一化信息的算法和启发式算法,用于降低维度和分类高光谱图像

An Algorithm and Heuristic based on Normalized Mutual Information for Dimensionality Reduction and Classification of Hyperspectral images

论文作者

Sarhrouni, Elkebir, Hammouch, Ahmed, Aboutajdine, Driss

论文摘要

在特征分类域中,数据的选择会广泛影响结果。高光谱图像(HSI)是同一区域的一组超过一百多个双向度量(称为频段)(称为地面真相图:GT)。 HSI是在一组n矢量上建模的。因此,我们有n个特征(或属性)表达C物质测量值的n个向量(称为类)。有问题的是,投资所有可能的子集在原则上是不可能的。因此,我们必须在n之间找到k矢量,例如相关和无冗余。为了对物质进行分类。在这里,我们介绍了一种基于归一化信息的算法,以选择相关和无冗余频带,这是提高HSI分类精度所必需的。 关键字:特征选择,归一化互信息,高光谱图像,分类,冗余。

In the feature classification domain, the choice of data affects widely the results. The Hyperspectral image (HSI), is a set of more than a hundred bidirectional measures (called bands), of the same region (called ground truth map: GT). The HSI is modelized at a set of N vectors. So we have N features (or attributes) expressing N vectors of measures for C substances (called classes). The problematic is that it's pratically impossible to investgate all possible subsets. So we must find K vectors among N, such as relevant and no redundant ones; in order to classify substances. Here we introduce an algorithm based on Normalized Mutual Information to select relevant and no redundant bands, necessary to increase classification accuracy of HSI. Keywords: Feature Selection, Normalized Mutual information, Hyperspectral images, Classification, Redundancy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源