论文标题

强化学习使紧凑,高效的集成光子设备的设计

Reinforcement learning enabled the design of compact and efficient integrated photonic devices

论文作者

Turduev, Mirbek, Bor, Emre, Alparslan, Onur, Hanay, Y. Sinan, Kurt, Hamza, Arakawa, Shin'ichi, Murata, Masayuki

论文摘要

在本文中,我们通过采用称为吸引子选择的强化学习来介绍集成光子设备的设计方法。在这里,我们将基于人工神经网络的吸引子选择算法与吸引子选择算法相结合,以实现具有低串扰的超紧凑且高效的光子设备,例如波长弹能消散器和偏光splitter。提出的设备由硅启用材料组成,与互补的金属氧化物 - 氧化通导器技术兼容,它们的结构尺寸使未来可能的制造过程。在1550 nm左右的近红外波长中给出了数值结果,并且将占3x3 UM2足迹的设计光子设备的性能与先前报道的结构进行了比较。因此,增强学习成功地应用于设计较小且优越的集成光子设备,在该设备中,可以将使用的方法进一步扩展到不同的应用程序。

In this paper, we introduce the design approach of integrated photonic devices by employing reinforcement learning known as attractor selection. Here, we combined three-dimensional finite-difference time-domain method with attractor selection algorithm, which is based on artificial neural networks, to achieve ultra-compact and highly efficient photonic devices with low crosstalk such as wavelength demultiplexers and a polarization splitter. The presented devices consist of silicon-on-insulator materials, which are compatible with complementary metal-oxide-semiconductor technology, and their structural dimensions enable the possible fabrication process in the future. The numerical results are presented for the near-infrared wavelengths at around 1550 nm, and the performance of designed photonic devices with footprint of 3x3 um2 are compared with the previously reported structures. Consequently, the reinforcement learning is successfully applied to design smaller and superior integrated photonic devices where the use of presented approach can be further expanded to different applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源