论文标题

互动推断:合作联合行动的多代理模型

Interactive inference: a multi-agent model of cooperative joint actions

论文作者

Maisto, Domenico, Donnarumma, Francesco, Pezzulo, Giovanni

论文摘要

我们推进了一个基于主动推断的认知框架的多机构合作联合作用的新型计算模型。该模型假定要解决一个联合任务,例如将红色或蓝色按钮压在一起,两个(或更多)代理参与交互式推断的过程。每个代理都保持对联合任务目标的概率信念(例如,我们应该按红色或蓝色按钮吗?),并通过观察其他代理的运动来对其进行更新,同时选择使他自己的意图易读且易于推断的动作(即,sensorimimotor communice)。随着时间的流逝,交互式推论既适应了代理人的信念和行为策略,从而确保了联合行动的成功。我们在两个模拟中体现了模型的功能。第一个模拟说明了“无领导者”联合行动。它表明,当两个代理商对他们的共同任务目标缺乏强烈的偏好时,他们通过观察彼此的运动来共同推断出来。反过来,这有助于其信念和行为策略的互动互动。第二个模拟说明了“领导者追随者”联合行动。它表明,当一个代理商(“领导者”)知道真正的联合目标时,它使用感觉运动通信来帮助另一个代理(“自助者”)推断出它,即使这样做需要选择一个更昂贵的个人计划。这些模拟表明,交互推理支持成功的多代理联合行动,并重现了人类实验中观察到的“无领导者”和“领导者”和“领导者 - 追随者”联合行动的关键认知和行为动态。总而言之,互动推理提供了一个具有认知启发的正式框架,以实现多代理系统中的合作联合行动和共识。

We advance a novel computational model of multi-agent, cooperative joint actions that is grounded in the cognitive framework of active inference. The model assumes that to solve a joint task, such as pressing together a red or blue button, two (or more) agents engage in a process of interactive inference. Each agent maintains probabilistic beliefs about the goal of the joint task (e.g., should we press the red or blue button?) and updates them by observing the other agent's movements, while in turn selecting movements that make his own intentions legible and easy to infer by the other agent (i.e., sensorimotor communication). Over time, the interactive inference aligns both the beliefs and the behavioral strategies of the agents, hence ensuring the success of the joint action. We exemplify the functioning of the model in two simulations. The first simulation illustrates a ''leaderless'' joint action. It shows that when two agents lack a strong preference about their joint task goal, they jointly infer it by observing each other's movements. In turn, this helps the interactive alignment of their beliefs and behavioral strategies. The second simulation illustrates a "leader-follower" joint action. It shows that when one agent ("leader") knows the true joint goal, it uses sensorimotor communication to help the other agent ("follower") infer it, even if doing this requires selecting a more costly individual plan. These simulations illustrate that interactive inference supports successful multi-agent joint actions and reproduces key cognitive and behavioral dynamics of "leaderless" and "leader-follower" joint actions observed in human-human experiments. In sum, interactive inference provides a cognitively inspired, formal framework to realize cooperative joint actions and consensus in multi-agent systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源