论文标题

基于消息传递的联合用户活动检测和临时大规模访问的通道估计

Message Passing-Based Joint User Activity Detection and Channel Estimation for Temporally-Correlated Massive Access

论文作者

Zhu, Weifeng, Tao, Meixia, Yuan, Xiaojun, Guan, Yunfeng

论文摘要

本文研究了在时间相关的大规模访问系统中的用户活动检测和渠道估计问题,在该系统中,大量用户偶尔会与基站进行通信,并且每个用户曾经激活的每个用户都可以通过多个连续帧的概率传输。我们将问题提出为动态压缩感测(DCS)问题,以利用用户活动的稀疏性和时间相关性。通过利用混合通用近似消息传递(Hygamp)框架,我们设计了一种计算有效的算法Hygamp-DCS来解决此问题。与仅利用历史估计相反,所提出的算法执行双向消息,传递相邻的框架以进行活动可能性更新,以完全利用时间相关的用户活动。此外,我们开发了一种期望最大化的Hygamp-DC(EM-Hygamp-DCS)算法,以便在系统统计数据未知时自适应地学习超参数。特别是,我们建议利用状态进化的分析工具找到EM-HYGAMP-DCS的适当高参数初始化。仿真结果表明,我们提出的算法可以显着提高用户活动检测准确性并减少通道估计误差。

This paper studies the user activity detection and channel estimation problem in a temporally-correlated massive access system where a very large number of users communicate with a base station sporadically and each user once activated can transmit with a large probability over multiple consecutive frames. We formulate the problem as a dynamic compressed sensing (DCS) problem to exploit both the sparsity and the temporal correlation of user activity. By leveraging the hybrid generalized approximate message passing (HyGAMP) framework, we design a computationally efficient algorithm, HyGAMP-DCS, to solve this problem. In contrast to only exploit the historical estimations, the proposed algorithm performs bidirectional message passing between the neighboring frames for activity likelihood update to fully exploit the temporally-correlated user activities. Furthermore, we develop an expectation maximization HyGAMP-DCS (EM-HyGAMP-DCS) algorithm to adaptively learn the hyperparameters during the estimation procedure when the system statistics are unknown. In particular, we propose to utilize the analysis tool of state evolution to find the appropriate hyperparameter initialization of EM-HyGAMP-DCS. Simulation results demonstrate that our proposed algorithms can significantly improve the user activity detection accuracy and reduce the channel estimation error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源