论文标题

基于会话的建议系统的图形上的异构信息交叉

Heterogeneous Information Crossing on Graphs for Session-based Recommender Systems

论文作者

Zheng, Xiaolin, Wu, Rui, Han, Zhongxuan, Chen, Chaochao, Chen, Linxun, Han, Bing

论文摘要

推荐系统是基本信息过滤技术,可以推荐满足用户个性和潜在需求的内容或项目。作为解决用户识别难度和历史信息不可用的难度的关键解决方案,基于会话的推荐系统提供了建议服务,这些服务仅依赖于当前会话中用户的行为。但是,大多数现有的研究都没有设计用于建模异质用户行为并在实际情况下捕获它们之间的关系。为了填补这一空白,在本文中,我们提出了一种基于图形的新方法,即在图上(HICG)上的异质信息交叉。 HICG在会话中利用多种类型的用户行为来构建异构图,并通过有效地跨越图形上的异质信息,从而捕获用户的当前兴趣。此外,我们还提出了一个名为HICG-CL的增强版本,该版本结合了对比度学习(CL)技术,以增强项目表示能力。通过利用不同会话之间的项目共发生关系,HICG-CL改善了HICG的建议性能。我们对三个现实世界建议数据集进行了广泛的实验,结果证明(i)HICG通过在异质图上利用多种类型的行为来实现最新性能。 (ii)HICG-CL进一步显着改善了通过拟议的对比度学习模块的HICG建议性能。

Recommender systems are fundamental information filtering techniques to recommend content or items that meet users' personalities and potential needs. As a crucial solution to address the difficulty of user identification and unavailability of historical information, session-based recommender systems provide recommendation services that only rely on users' behaviors in the current session. However, most existing studies are not well-designed for modeling heterogeneous user behaviors and capturing the relationships between them in practical scenarios. To fill this gap, in this paper, we propose a novel graph-based method, namely Heterogeneous Information Crossing on Graphs (HICG). HICG utilizes multiple types of user behaviors in the sessions to construct heterogeneous graphs, and captures users' current interests with their long-term preferences by effectively crossing the heterogeneous information on the graphs. In addition, we also propose an enhanced version, named HICG-CL, which incorporates contrastive learning (CL) technique to enhance item representation ability. By utilizing the item co-occurrence relationships across different sessions, HICG-CL improves the recommendation performance of HICG. We conduct extensive experiments on three real-world recommendation datasets, and the results verify that (i) HICG achieves the state-of-the-art performance by utilizing multiple types of behaviors on the heterogeneous graph. (ii) HICG-CL further significantly improves the recommendation performance of HICG by the proposed contrastive learning module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源