论文标题

部分可观测时空混沌系统的无模型预测

DMODE: Differential Monocular Object Distance Estimation Module without Class Specific Information

论文作者

Agand, Pedram, Chang, Michael, Chen, Mo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Utilizing a single camera for measuring object distances is a cost-effective alternative to stereo-vision and LiDAR. Although monocular distance estimation has been explored in the literature, most existing techniques rely on object class knowledge to achieve high performance. Without this contextual data, monocular distance estimation becomes more challenging, lacking reference points and object-specific cues. However, these cues can be misleading for objects with wide-range variation or adversarial situations, which is a challenging aspect of object-agnostic distance estimation. In this paper, we propose DMODE, a class-agnostic method for monocular distance estimation that does not require object class knowledge. DMODE estimates an object's distance by fusing its fluctuation in size over time with the camera's motion, making it adaptable to various object detectors and unknown objects, thus addressing these challenges. We evaluate our model on the KITTI MOTS dataset using ground-truth bounding box annotations and outputs from TrackRCNN and EagerMOT. The object's location is determined using the change in bounding box sizes and camera position without measuring the object's detection source or class attributes. Our approach demonstrates superior performance in multi-class object distance detection scenarios compared to conventional methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源