论文标题

部分可观测时空混沌系统的无模型预测

GCT: Gated Contextual Transformer for Sequential Audio Tagging

论文作者

Hou, Yuanbo, Wang, Yun, Wang, Wenwu, Botteldooren, Dick

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Audio tagging aims to assign predefined tags to audio clips to indicate the class information of audio events. Sequential audio tagging (SAT) means detecting both the class information of audio events, and the order in which they occur within the audio clip. Most existing methods for SAT are based on connectionist temporal classification (CTC). However, CTC cannot effectively capture connections between events due to the conditional independence assumption between outputs at different times. The contextual Transformer (cTransformer) addresses this issue by exploiting contextual information in SAT. Nevertheless, cTransformer is also limited in exploiting contextual information as it only uses forward information in inference. This paper proposes a gated contextual Transformer (GCT) with forward-backward inference (FBI). In addition, a gated contextual multi-layer perceptron (GCMLP) block is proposed in GCT to improve the performance of cTransformer structurally. Experiments on two real-life audio datasets show that the proposed GCT with GCMLP and FBI performs better than the CTC-based methods and cTransformer. To promote research on SAT, the manually annotated sequential labels for the two datasets are released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源