论文标题

非本地$ bv $函数和具有$ l^1 $ fidelity的脱泽模型

Non-local $BV$ functions and a denoising model with $L^1$ fidelity

论文作者

Bessas, Konstantinos, Stefani, Giorgio

论文摘要

我们研究了具有加权$ l^1 $ fidelity的一般总变化模型,其中正规术语是由合适的(不可汇总)内核$ k $引起的非本地变化,近似项给出了$ l^1 $规范,相对于非阳性级别的$ l^bounted $ l^$ l^$ l^f^uffty $ l^\ filtty $ l^\ infty $ denter。我们对具有有限的总$ k $变化的非本地$ bv $函数的空间进行了详细分析,并特别强调了紧凑,卢辛型型估计值,sobolev嵌入式以及$ k $ variation and Isoperimetietric and Monotonicity属性。最后,我们在这种非本地环境中处理了Cheeger集合的理论,并将其应用于模型中的忠诚度。

We study a general total variation denoising model with weighted $L^1$ fidelity, where the regularizing term is a non-local variation induced by a suitable (non-integrable) kernel $K$, and the approximation term is given by the $L^1$ norm with respect to a non-singular measure with positively lower-bounded $L^\infty$ density. We provide a detailed analysis of the space of non-local $BV$ functions with finite total $K$-variation, with special emphasis on compactness, Lusin-type estimates, Sobolev embeddings and isoperimetric and monotonicity properties of the $K$-variation and the associated $K$-perimeter. Finally, we deal with the theory of Cheeger sets in this non-local setting and we apply it to the study of the fidelity in our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源