论文标题

有效识别基于仿真的推理中的信息特征

Efficient identification of informative features in simulation-based inference

论文作者

Beck, Jonas, Deistler, Michael, Bernaerts, Yves, Macke, Jakob, Berens, Philipp

论文摘要

基于仿真的贝叶斯推理(SBI)可用于估计观察到的模型输出的复杂机械模型的参数,而无需访问明确的似然评估。 SBI在神经科学中应用的一个主要示例涉及估计从电生理测量中估算Hodgkin-Huxley(HH)模型的响应动力学的参数,这是通过在参数上推断出与一组观察结果一致的参数来估算的。为此,许多SBI方法采用了一组摘要统计或科学解释的特征来估计替代可能性或后部。但是,目前无法确定每个摘要统计量或功能有助于减少后部不确定性的多少。为了应对这一挑战,可以简单地比较推理过程中包含有和没有给定功能的后代。但是,对于大型或嵌套的特征集,这将需要反复估计后部,这在计算上昂贵甚至是过于刺激的。在这里,我们根据SBI方法神经可能性估计(NLE)提供了一种更有效的方法:我们表明,在推断后验之前,可以将受过训练的替代可能的替代可能性边缘化,以评估功能的贡献。我们通过识别推断示例HH神经元模型参数的最重要特征来证明我们方法的有用性。除了神经科学外,我们的方法通常适用于依赖于其他科学领域的推理数据特征的SBI工作流。

Simulation-based Bayesian inference (SBI) can be used to estimate the parameters of complex mechanistic models given observed model outputs without requiring access to explicit likelihood evaluations. A prime example for the application of SBI in neuroscience involves estimating the parameters governing the response dynamics of Hodgkin-Huxley (HH) models from electrophysiological measurements, by inferring a posterior over the parameters that is consistent with a set of observations. To this end, many SBI methods employ a set of summary statistics or scientifically interpretable features to estimate a surrogate likelihood or posterior. However, currently, there is no way to identify how much each summary statistic or feature contributes to reducing posterior uncertainty. To address this challenge, one could simply compare the posteriors with and without a given feature included in the inference process. However, for large or nested feature sets, this would necessitate repeatedly estimating the posterior, which is computationally expensive or even prohibitive. Here, we provide a more efficient approach based on the SBI method neural likelihood estimation (NLE): We show that one can marginalize the trained surrogate likelihood post-hoc before inferring the posterior to assess the contribution of a feature. We demonstrate the usefulness of our method by identifying the most important features for inferring parameters of an example HH neuron model. Beyond neuroscience, our method is generally applicable to SBI workflows that rely on data features for inference used in other scientific fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源