论文标题

从混合电路动力学的量子通信的相干要求

Coherence requirements for quantum communication from hybrid circuit dynamics

论文作者

Kelly, Shane P., Poschinger, Ulrich, Schmidt-Kaler, Ferdinand, Fisher, Matthew P. A., Marino, Jamir

论文摘要

量子状态的相干叠加是量子信息处理的重要资源,将量子动力学和信息与经典的对应物区分开来。在本文中,我们确定了在宽泛的环境中传达量子信息的相干要求,其中包含受监视的量子动态和量子误差校正代码。我们通过考虑由两个对手Alice和Eve之间玩过的量子信息游戏生成的混合电路来确定这些要求,Alice和Eve在固定数量的Qubits上使用单位者和测量结果来竞争。爱丽丝(Alice)应用单位人士试图维持量子通道容量,而EVE则应用测量来摧毁它。通过限制每个对手可用的连贯性生成或破坏操作,我们确定了爱丽丝的连贯要求。当爱丽丝(Alice)扮演旨在模仿通用监测量子动态的随机策略时,我们发现了纠缠和量子通道容量中的相干调节相变。然后,我们得出一个定理,给出了爱丽丝在任何成功策略中所需的最小连贯性,并通过证明连贯性在任何稳定器量子误差校正代码中都在代码距离上设置了上限。这样的界限提供了对量子通信和误差校正的连贯资源要求的严格量化。

The coherent superposition of quantum states is an important resource for quantum information processing which distinguishes quantum dynamics and information from their classical counterparts. In this article we determine the coherence requirements to communicate quantum information in a broad setting encompassing monitored quantum dynamics and quantum error correction codes. We determine these requirements by considering hybrid circuits that are generated by a quantum information game played between two opponents, Alice and Eve, who compete by applying unitaries and measurements on a fixed number of qubits. Alice applies unitaries in an attempt to maintain quantum channel capacity, while Eve applies measurements in an attempt to destroy it. By limiting the coherence generating or destroying operations available to each opponent, we determine Alice's coherence requirements. When Alice plays a random strategy aimed at mimicking generic monitored quantum dynamics, we discover a coherence-tuned phase transitions in entanglement and quantum channel capacity. We then derive a theorem giving the minimum coherence required by Alice in any successful strategy, and conclude by proving that coherence sets an upper bound on the code distance in any stabelizer quantum error correction codes. Such bounds provide a rigorous quantification of the coherence resource requirements for quantum communication and error correction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源