论文标题
粒子物理发现的机器学习压缩
Machine-Learning Compression for Particle Physics Discoveries
论文作者
论文摘要
在基于对撞机的粒子和核物理实验中,数据以极高的速率产生,以至于只能记录一个子集以进行以后分析。通常,算法选择单个碰撞事件以保存并存储完整的实验响应。一个相对较新的替代策略是另外为更大的事件子集保存部分记录,以便以后对更大部分事件的特定分析。我们提出了一种策略,通过压缩整个事件以进行通用的离线分析,但以较低的保真度来弥合这些范例。基于最佳传输的$β$变量自动编码器(VAE)用于自动化压缩,超参数$β$控制压缩保真度。我们通过同时学习适合所有通过参数化值的VAE来介绍了一种新方法来用于多目标学习功能。我们提出了一个例子用例,是大型强子对撞机(LHC)的Di-Muon共振搜索,在其中我们表明,通过$β$ -VAE压缩的模拟数据具有足够的忠诚度以区分不同的信号形态。
In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a larger subset of events, allowing for later specific analysis of a larger fraction of events. We propose a strategy that bridges these paradigms by compressing entire events for generic offline analysis but at a lower fidelity. An optimal-transport-based $β$ Variational Autoencoder (VAE) is used to automate the compression and the hyperparameter $β$ controls the compression fidelity. We introduce a new approach for multi-objective learning functions by simultaneously learning a VAE appropriate for all values of $β$ through parameterization. We present an example use case, a di-muon resonance search at the Large Hadron Collider (LHC), where we show that simulated data compressed by our $β$-VAE has enough fidelity to distinguish distinct signal morphologies.