论文标题

量子测量的量子计量学的最佳协议

Optimal protocols for quantum metrology with noisy measurements

论文作者

Zhou, Sisi, Michalakis, Spyridon, Gefen, Tuvia

论文摘要

测量噪声是量子计量学中噪声的主要来源。在这里,我们探讨了在最终噪声测量之前将量子控件应用于量子传感器状态的预处理方案(但是在未知参数被赋予之后),旨在最大化估计精度。我们定义了量子预处理优化的渔民信息,该信息确定了测量噪声下量子传感器的最终精度极限,并对最佳预处理方案进行了彻底的研究。首先,我们使用可观察到的错误形式主义提出预处理优化问题作为双孔vex优化,我们证明,在几种实际上相关的情况下,单位控制对纯状态是最佳的,并得出了最佳控制的分析解决方案。然后,我们证明,对于通勤操作员测量值的经典混合状态(其特征值编码未知参数),粗粒度控制是最佳的,而在某些情况下,单一控制措施是次优的。最后,我们证明,在多探针系统中,嘈杂的测量值独立于每个探测器作用,可以使用全局控制措施渐近地恢复无噪声的精确限制,以实现广泛的量子状态和测量。提出了嘈杂的拉姆西干涉法和温度测定法,以及最佳控制的显式电路结构。

Measurement noise is a major source of noise in quantum metrology. Here, we explore preprocessing protocols that apply quantum controls to the quantum sensor state prior to the final noisy measurement (but after the unknown parameter has been imparted), aiming to maximize the estimation precision. We define the quantum preprocessing-optimized Fisher information, which determines the ultimate precision limit for quantum sensors under measurement noise, and conduct a thorough investigation into optimal preprocessing protocols. First, we formulate the preprocessing optimization problem as a biconvex optimization using the error observable formalism, based on which we prove that unitary controls are optimal for pure states and derive analytical solutions of the optimal controls in several practically relevant cases. Then we prove that for classically mixed states (whose eigenvalues encode the unknown parameter) under commuting-operator measurements, coarse-graining controls are optimal, while unitary controls are suboptimal in certain cases. Finally, we demonstrate that in multi-probe systems where noisy measurements act independently on each probe, the noiseless precision limit can be asymptotically recovered using global controls for a wide range of quantum states and measurements. Applications to noisy Ramsey interferometry and thermometry are presented, as well as explicit circuit constructions of optimal controls.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源