论文标题

估计来自粗糙接触数据的人类接触模式的良好年龄结构和时间趋势:贝叶斯率一致性模型

Estimating fine age structure and time trends in human contact patterns from coarse contact data: the Bayesian rate consistency model

论文作者

Dan, Shozen, Chen, Yu, Chen, Yining, Monod, Melodie, Jaeger, Veronika K., Bhatt, Samir, Karch, Andre, Ratmann, Oliver

论文摘要

自从严重的急性呼吸综合征冠状病毒2(SARS-COV-2)出现以来,已经进行了许多接触调查,以衡量面对大流行和非药物干预措施的人类相互作用的变化。这些调查通常是使用与流行前时代不同的方案进行纵向进行的。我们提出了一种基于模型的统计方法,即使触点的年龄由5或10岁的年龄段报道,也可以以1年的分辨率重建接触模式。这项创新源于人口级的一致性限制,在组之间的联系方式上加起来,这促使我们称之为贝叶斯速率一致性模型。该模型结合了计算高效的希尔伯特太空高斯工艺先验,以推断年龄和性别结构的社会接触中的动态,并旨在调整纵向调查中的疲劳。我们证明了模拟通过性别和1年龄间的重建接触模式的能力,并以足够的精度和完全贝叶斯的框架内的粗略数据从粗略数据中进行量化,以量化不确定性。我们研究了2020年4月至2020年6月在德国收集的社会接触数据的模式,其中包括五个纵向调查浪潮。我们在大流行的早期阶段重建社会接触中的良好年龄结构,并证明社会接触以结构化的,非均匀的方式反弹。我们还表明,到2020年7月,尽管非药物干预措施有相当大的放松,但社会接触强度仍然远低于大流行价值。这种基于模型的推理方法是开放访问,可在计算方面可以允许完整的贝叶斯不确定性量化,并且只要报道了调查参与者的确切年龄,就可以随时适用于当代调查数据。

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many contact surveys have been conducted to measure changes in human interactions in the face of the pandemic and non-pharmaceutical interventions. These surveys were typically conducted longitudinally, using protocols that differ from those used in the pre-pandemic era. We present a model-based statistical approach that can reconstruct contact patterns at 1-year resolution even when the age of the contacts is reported coarsely by 5 or 10-year age bands. This innovation is rooted in population-level consistency constraints in how contacts between groups must add up, which prompts us to call the approach presented here the Bayesian rate consistency model. The model incorporates computationally efficient Hilbert Space Gaussian process priors to infer the dynamics in age- and gender-structured social contacts and is designed to adjust for reporting fatigue in longitudinal surveys. We demonstrate on simulations the ability to reconstruct contact patterns by gender and 1-year age interval from coarse data with adequate accuracy and within a fully Bayesian framework to quantify uncertainty. We investigate the patterns of social contact data collected in Germany from April to June 2020 across five longitudinal survey waves. We reconstruct the fine age structure in social contacts during the early stages of the pandemic and demonstrate that social contacts rebounded in a structured, non-homogeneous manner. We also show that by July 2020, social contact intensities remained well below pre-pandemic values despite a considerable easing of non-pharmaceutical interventions. This model-based inference approach is open access, computationally tractable enabling full Bayesian uncertainty quantification, and readily applicable to contemporary survey data as long as the exact age of survey participants is reported.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源