论文标题

Vilenkin-fourier系列在可变的lebesgue空间

Vilenkin-Fourier series in variable Lebesgue spaces

论文作者

Adamadze, Daviti, Kopaliani, Tengiz

论文摘要

令$ s_ {n} f $表示l^{1}(g)$ in函数$ f \ vilenkin-fourier系列的部分总和。对于$ 1 <p _ { - } \ leq p _ {+} <\ infty $,我们表征了所有指数$ p(\ cdot)$,为$ s_ {n} f $ to $ f $ to $ f $ in $ l^{p(\ cdot)}(g cdot)}(g)$ f $ f $ f f $ f $ f f $ f \ f^cd cd cd(cd)

Let $S_{n}f$ denote the $n$th partial sum of the Vilenkin-Fourier series of a function $f \in L^{1}(G)$. For $1 < p_{-} \leq p_{+} < \infty$, we characterize all exponents $p(\cdot)$ for which the convergence of $S_{n}f$ to $f$ in $L^{p(\cdot)}(G)$ holds whenever $f \in L^{p(\cdot)}(G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源