论文标题

与鞍点法和斯特林公式有关的一个奇怪身份

A curious identity in connection with saddle-point method and Stirling's formula

论文作者

Hwang, Hsien-Kuei

论文摘要

我们证明了正式力量系列的好奇身份:\ [\ int _ { - \ infty}^{\ infty} [y^m] \ exp \ left( - \ frac {t^2} 2 +sum_ sum_ {j \ ge3}} y^{j-2} \ right)\ mathrm {d} t = \ int _ { - \ infty}^{\ infty} [y^m] \ exp \ left( - \ frac {t^2} 2+ \ sum__ y^{j-2} \ right)\ mathrm {d} t,\]对于$ m = 0,1,\ dots $,其中$ [y^m] f(y)$表示$ f $的泰勒扩展中的$ y^m $的系数。还研究了从鞍点方法的角度来看,这种身份的一般性。

We prove the curious identity in the sense of formal power series: \[ \int_{-\infty}^{\infty}[y^m] \exp\left(-\frac{t^2}2 +\sum_{j\ge3}\frac{(it)^j}{j!}\, y^{j-2}\right)\mathrm{d} t = \int_{-\infty}^{\infty}[y^m] \exp\left(-\frac{t^2}2+ \sum_{j\ge3}\frac{(it)^j}{j}\, y^{j-2}\right)\mathrm{d} t, \] for $m=0,1,\dots$, where $[y^m]f(y)$ denotes the coefficient of $y^m$ in the Taylor expansion of $f$. The generality of this identity from the perspective of saddle-point method is also examined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源