论文标题
量化系外行星科学的Fabry-Perot共振器中的宽带色漂移
Quantifying broadband chromatic drifts in Fabry-Perot resonators for exoplanet science
论文作者
论文摘要
超出我们太阳系以外的地球类似物的可能性是科学中最长期的问题之一。目前,回答这个问题体现了一个极其困难的测量问题,需要在天文望远镜,光纤,光纤,精密光谱仪,大格式检测器阵列和高级数据处理方面进行多个协调的进步。综上所述,应对这一挑战将需要在多年期间10^-10级的恒星光谱进行测量和校准。最近,通过将激光频率梳(LFC)引入精确天文学光谱领域的潜力已提出。但是,LFC的费用,复杂性和缺乏全光谱覆盖范围限制了它们的广泛使用和最终影响。为了解决这个问题,我们探索简单且坚固的白色灯光鲜艳的Fabry-Perot(FP)Etalons作为光谱校准器,以进行精确的径向速度测量。我们跟踪来自两个最先进的天文学仪表板上已安装的FPS的13,000张Etalon模式的频率。将这些测量结果与建模相结合,我们将FP模式的意外色变化与宽带宽FP镜子的介电层的子点仪变化。这产生了FP模式的频率,精度接近10^-11/天,相当于3 mm/s/day的径向速度(RV)多普勒偏移。这些结果代表了两个方面的精确RV测量的关键进展:首先,它们使FP Etalons成为更强大的独立校准工具,其次,它们证明了LFC在接近一年的时间内扩展CM/S级RV测量精度。这些进步共同突出了在寻找像我们自己的地球至关重要的水平上实现光谱校准的途径。
The possibility of an Earth-Sun analog beyond our solar system is one of the most longstanding questions in science. At present, answering this question embodies an extremely difficult measurement problem that requires multiple coordinated advances in astronomical telescopes, fiber optics, precision spectrographs, large format detector arrays, and advanced data processing. Taken together, addressing this challenge will require the measurement and calibration of shifts in stellar spectra at the 10^-10 level over multi-year periods. The potential for such precision has recently been advanced by the introduction of laser frequency combs (LFCs) to the field of precision astronomical spectroscopy. However, the expense, complexity and lack of full spectral coverage of LFCs has limited their widespread use and ultimate impact. To address this issue, we explore simple and robust white-light-illuminated Fabry-Perot (FP) etalons as spectral calibrators for precise radial velocity measurements. We track the frequencies of up to 13,000 etalon modes of the installed FPs from two state-of-the-art astronomical spectrographs. Combining these measurements with modeling, we trace unexpected chromatic variations of the FP modes to sub-picometer changes in the dielectric layers of the broad bandwidth FP mirrors. This yields the determination of the frequencies of the FP modes with precision approaching 10^-11/day, equivalent to a radial velocity (RV) Doppler shift of 3 mm/s/day. These results represent critical progress in precision RV measurements on two fronts: first, they make FP etalons a more powerful stand-alone calibration tool, and second, they demonstrate the capability of LFCs to extend cm/s level RV measurement precision over periods approaching a year. Together, these advances highlight a path to achieving spectroscopic calibration at levels that will be critical for finding earths like our own.