论文标题

RAI:通过持续学习的稳健而准确的互动分割

RAIS: Robust and Accurate Interactive Segmentation via Continual Learning

论文作者

Hao, Yuying, Liu, Yi, Peng, Juncai, Xiong, Haoyi, Chen, Guowei, Tang, Shiyu, Chen, Zeyu, Lai, Baohua

论文摘要

交互式图像分割旨在通过人类计算机相互作用的方式分割目标区域。基于深度学习的最新作品已经取得了出色的表现,而大多数人则专注于提高训练集的准确性,而忽略了测试集的潜在改进。在推论阶段,它们倾向于在与训练集的类似领域上具有良好的性能,并且缺乏对域转移的适应性,因此他们需要更多的用户努力来获得令人满意的结果。在这项工作中,我们提出了RAIS,这是一种稳健而准确的体系结构,用于通过连续学习进行交互式分割,模型可以从火车和测试数据集中学习。为了在测试集上有效学习,我们提出了一种新颖的优化策略,分别使用基本的分割模块和适应模块更新全局和局部参数。此外,与最近的交互式分割方法相比,我们对几个基准进行了广泛的实验,这些实验表明我们的方法可以处理数据分布变化并实现SOTA性能。此外,我们的方法还显示了其在遥感和医学成像数据集中的鲁棒性,在训练和测试之间,数据域完全不同。

Interactive image segmentation aims at segmenting a target region through a way of human-computer interaction. Recent works based on deep learning have achieved excellent performance, while most of them focus on improving the accuracy of the training set and ignore potential improvement on the test set. In the inference phase, they tend to have a good performance on similar domains to the training set, and lack adaptability to domain shift, so they require more user efforts to obtain satisfactory results. In this work, we propose RAIS, a robust and accurate architecture for interactive segmentation with continuous learning, where the model can learn from both train and test data sets. For efficient learning on the test set, we propose a novel optimization strategy to update global and local parameters with a basic segmentation module and adaptation module, respectively. Moreover, we perform extensive experiments on several benchmarks that show our method can handle data distribution shifts and achieves SOTA performance compared with recent interactive segmentation methods. Besides, our method also shows its robustness in the datasets of remote sensing and medical imaging where the data domains are completely different between training and testing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源