论文标题

GEO6D:6D姿势估计的几何约束学习

Geo6D: Geometric Constraints Learning for 6D Pose Estimation

论文作者

Chen, Jianqiu, Sun, Mingshan, Zheng, Ye, Bao, Tianpeng, He, Zhenyu, Li, Donghai, Jin, Guoqiang, Zhao, Rui, Wu, Liwei, Jiang, Xiaoke

论文摘要

已经提出了许多6D姿势估计方法,该方法采用端到端回归直接估计目标姿势参数。由于对象的可见特征受其姿势隐式影响,因此网络允许通过分析可见区域特征的差异来推断姿势。但是,由于姿势变化的不可预测和不受限制的范围,训练样本中隐含地学习的可见特征姿势约束不足以覆盖,从而使网络容易受到看不见的对象姿势的影响。为了应对这些挑战,我们提出了一种新型的几何约束学习方法,称为GEO6D,用于直接回归6D姿势估计方法。它引入了一个以相对偏移表示形式表示的姿势转换公式,该公式被用作几何约束,以重建网络的输入和输出目标。这些重建的数据使网络能够基于明确的几何约束和相对偏移表示形式估算姿势,从而减轻了姿势分布差距的问题。广泛的实验结果表明,当配备GEO6D时,直接的6D方法可以在多个数据集上实现最先进的性能,即使只有10%的数据也显示出显着的有效性。

Numerous 6D pose estimation methods have been proposed that employ end-to-end regression to directly estimate the target pose parameters. Since the visible features of objects are implicitly influenced by their poses, the network allows inferring the pose by analyzing the differences in features in the visible region. However, due to the unpredictable and unrestricted range of pose variations, the implicitly learned visible feature-pose constraints are insufficiently covered by the training samples, making the network vulnerable to unseen object poses. To tackle these challenges, we proposed a novel geometric constraints learning approach called Geo6D for direct regression 6D pose estimation methods. It introduces a pose transformation formula expressed in relative offset representation, which is leveraged as geometric constraints to reconstruct the input and output targets of the network. These reconstructed data enable the network to estimate the pose based on explicit geometric constraints and relative offset representation mitigates the issue of the pose distribution gap. Extensive experimental results show that when equipped with Geo6D, the direct 6D methods achieve state-of-the-art performance on multiple datasets and demonstrate significant effectiveness, even with only 10% amount of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源