论文标题

自主系统对象检测的评估指标

Evaluation Metrics for Object Detection for Autonomous Systems

论文作者

Badithela, Apurva, Wongpiromsarn, Tichakorn, Murray, Richard M.

论文摘要

本文研究了基于学习的对象检测模型的评估以及对自主系统及其环境抽象模型中定义的形式规格的模型检查。特别是,我们定义了两个指标 - \ emph {命题标记}和\ emph {class-labeLed}混淆矩阵 - 评估对象检测,并且我们合并了这些指标来计算系统层面安全要求的满意度。虽然混淆矩阵对于分类和对象检测模型的比较评估有效,但我们的框架填补了两个关键空白。首先,我们将对象检测的性能与下游高级计划任务定义的形式要求相关联。特别是,我们提供的经验结果表明,对于整体系统的正式要求,选择良好的对象检测算法的选择在很大程度上取决于下游计划和控制设计。其次,与传统的混淆矩阵不同,我们的指标可以说明性能的变化,相对于自我与所检测到的对象之间的距离。我们通过计算在线性时间逻辑(LTL)中形式上的安全要求的满意度概率来证明此框架。

This paper studies the evaluation of learning-based object detection models in conjunction with model-checking of formal specifications defined on an abstract model of an autonomous system and its environment. In particular, we define two metrics -- \emph{proposition-labeled} and \emph{class-labeled} confusion matrices -- for evaluating object detection, and we incorporate these metrics to compute the satisfaction probability of system-level safety requirements. While confusion matrices have been effective for comparative evaluation of classification and object detection models, our framework fills two key gaps. First, we relate the performance of object detection to formal requirements defined over downstream high-level planning tasks. In particular, we provide empirical results that show that the choice of a good object detection algorithm, with respect to formal requirements on the overall system, significantly depends on the downstream planning and control design. Secondly, unlike the traditional confusion matrix, our metrics account for variations in performance with respect to the distance between the ego and the object being detected. We demonstrate this framework on a car-pedestrian example by computing the satisfaction probabilities for safety requirements formalized in Linear Temporal Logic (LTL).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源