论文标题
Sarabande:3/4点相关功能与快速傅立叶变换
SARABANDE: 3/4 Point Correlation Functions with Fast Fourier Transforms
论文作者
论文摘要
我们提出了一个新的$ \ texttt {python} $ sarabande,用于测量3和4点相关函数(3/4 pcfs),$ \ mathcal {o}(n _ {\ rm g} \ rm g} \ log log n _ {\ rm g}用于FFT的网格点。 Sarabande可以在网格的2D和3D数据集上测量投影和完整的3和4个PCF。一般技术是在基础网格上生成合适的角度函数,径向bin以创建内核,并与原始网格数据卷积,以同时获得每个点的扩展系数。然后将这些系数组合在一起,从而为我们提供3/4 PCF,以扩展我们的基础。我们将Sarabande应用于模拟星际介质(ISM),以显示计算完整和预测的3/4 PCF的结果和缩放。
We present a new $\texttt{python}$ package SARABANDE for measuring 3 & 4 Point Correlation Functions (3/4 PCFs) in $\mathcal{O}(N_{\rm g} \log N_{\rm g})$ time using Fast Fourier Transforms (FFTs), with $N_{\rm g}$ the number of grid points used for the FFT. SARABANDE can measure both projected and full 3 and 4 PCFs on gridded 2D and 3D datasets. The general technique is to generate suitable angular basis functions on an underlying grid, radially bin these to create kernels, and convolve these kernels with the original gridded data to obtain expansion coefficients about every point simultaneously. These coefficients are then combined to give us the 3/4 PCF as expanded in our basis. We apply SARABANDE to simulations of the Interstellar Medium (ISM) to show the results and scaling of calculating both the full and projected 3/4 PCFs.