论文标题
在一维玻色纤维 - 哈伯德模型中长度尺度的竞争不稳定性
Competing instabilities at long length scales in the one-dimensional Bose-Fermi-Hubbard model at commensurate fillings
论文作者
论文摘要
我们研究了标量玻色子的单位填充时一维玻色纤维纤维 - 哈伯德模型的相图,并使用量子蒙特卡洛模拟使用$ s = 1/2 $ fermions的一半填充。费米子之间的裸相互作用设置为零。我们研究的一个核心问题是,对于弱和强种间的耦合,玻色子都可以在玻色子之间引起哪种类型的相互作用。我们发现,诱导的相互作用可以导致竞争不稳定性有利于相分离,超导相和密度波结构,在许多情况下,在100多个地点的长度上工作。还发现了比具有现场相互作用的纯玻色粒系统更快的质基质衰减的边缘骨骨超氟。
We study the phase diagram of the one-dimensional Bose-Fermi-Hubbard model at unit filling for the scalar bosons and half filling for the $S=1/2$ fermions using quantum Monte Carlo simulations. The bare interaction between the fermions is set to zero. A central question of our study is what type of interactions can be induced between the fermions by the bosons, for both weak and strong interspecies coupling. We find that the induced interactions can lead to competing instabilities favoring phase separation, superconducting phases, and density wave structures, in many cases at work on length scales of more than 100 sites. Marginal bosonic superfluids with a density matrix decaying faster than what is allowed for pure bosonic systems with on-site interactions, are also found.