论文标题

抽象性对话摘要的分类学:场景,方法和未来方向

Taxonomy of Abstractive Dialogue Summarization: Scenarios, Approaches and Future Directions

论文作者

Jia, Qi, Liu, Yizhu, Ren, Siyu, Zhu, Kenny Q.

论文摘要

抽象性对话摘要是为了在两个或多个对话者之间的对话中生成简洁而流利的摘要,涵盖了显着信息。近年来,基于社会交流平台的大量出现以及有效的对话信息理解和消化的紧急要求,它引起了极大的关注。与传统文档摘要中的新闻或文章不同,对话带来了独特的特征和其他挑战,包括不同的语言样式和格式,分散的信息,灵活的话语结构以及不清楚的主题界限。这项调查提供了对场景,评估方法的抽象对话摘要的现有工作的全面调查。它根据输入对话的类型,即开放式和任务为导向的输入对话的类型将任务分为两个类别,并在三个方向上介绍了现有技术的分类法,即注入对话特征,设计辅助培训任务并使用其他数据列表。在不同的方案中,在不同的情况下进行了评估和广泛评估。之后,总结了场景和技术的趋势,并深入了解广泛利用的特征和不同场景之间的相关性。基于这些分析,我们建议未来的方向,包括更多受控和复杂的方案,技术创新和比较,特殊域中的公开数据集等。

Abstractive dialogue summarization is to generate a concise and fluent summary covering the salient information in a dialogue among two or more interlocutors. It has attracted great attention in recent years based on the massive emergence of social communication platforms and an urgent requirement for efficient dialogue information understanding and digestion. Different from news or articles in traditional document summarization, dialogues bring unique characteristics and additional challenges, including different language styles and formats, scattered information, flexible discourse structures and unclear topic boundaries. This survey provides a comprehensive investigation on existing work for abstractive dialogue summarization from scenarios, approaches to evaluations. It categorizes the task into two broad categories according to the type of input dialogues, i.e., open-domain and task-oriented, and presents a taxonomy of existing techniques in three directions, namely, injecting dialogue features, designing auxiliary training tasks and using additional data.A list of datasets under different scenarios and widely-accepted evaluation metrics are summarized for completeness. After that, the trends of scenarios and techniques are summarized, together with deep insights on correlations between extensively exploited features and different scenarios. Based on these analyses, we recommend future directions including more controlled and complicated scenarios, technical innovations and comparisons, publicly available datasets in special domains, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源