论文标题

受撞击和振动产生的弹性波在受限的颗粒介质中

Elastic waves generated by impact and vibration in confined granular media

论文作者

Thomas, Gallot, Camila, Sedofeito, Alejandro, Ginares, Gonzalo, Tancredi

论文摘要

小行星的观察数据可以通过将它们视为颗粒状材料的聚集。理解这些物体的机械性能是出于许多科学原因而与之相关的:空间任务设计,对我们星球的影响威胁的评估以及理解小行星的性质及其对太阳系起源的含义。机械性能的原位测量需要复杂且昂贵的空间任务。在这里,使用新型的实验设置以及数值模拟提出了颗粒介质中波传播的实验室规模表征。小行星内部的压力仍然是争论的问题,但肯定会给内部带来压力梯度。这就是为什么需要作为限制压力的函数执行影响表征的原因。我们的实验设置允许同时测量50厘米侧平方盒中装满十亿粒的侧箱中的外部限制压力,内部压力,总应变和加速度。我们研究了500 Hz范围内撞击生成和振动造成的地震人体波的传播。通过随后的压缩 - 放松周期,观察到颗粒培养基在每种压缩过程中平均表现得像固体一样,弹性模量恒定。颗粒介质的有效培养基理论(EMT)在低压下解释了数据。在每个压缩释放周期之后,弹性模量增加,观察到高滞后:弛豫表现出比压缩更复杂的行为。我们表明,在压力波速度下,撞击和振动都会产生的地震波。多亏了数值模型,我们测量了强波衰减$α\ sim3.4 $ np/m。我们发现,波速随着$ p^{1/2} $的限制压力而增加。

Observational data of asteroids can be explained by considering them as an agglomerate of granular material. Understanding the mechanical properties of these objects is relevant for many scientific reasons: space missions design, evaluation of impact threats to our planet, and understanding the nature of asteroids and their implication in the origin of the solar system. In-situ measurements of mechanical properties require complex and costly space missions. Here a laboratory-scale characterization of wave propagation in granular media is presented using a novel experimental setup as well as numerical simulations. The pressure inside an asteroid is still a matter of debate, but it definitely presents a pressure gradient towards the interior. This is why impact characterization needs to be performed as a function of the confining pressure. Our experimental setup allows for the simultaneous measurement of the external confining pressure, internal pressure, total strain, and acceleration in a 50 cm side squared box filled up with a billion grains. We study the propagation of impact-generated and shaker-born seismic body waves in the 500 Hz range. Through subsequent compression-relaxation cycles, it was observed that the granular media behaves on average like a solid with a constant elastic modulus during each compression. Effective medium theory (EMT) for granular media explains the data at low pressure. After each compression-relaxation cycle, the elastic modulus increases, and a high hysteresis is observed: relaxation shows a more complex behavior than compression. We show that seismic waves generated by both impact and vibration travels at the pressure wave speed. Thanks to a numerical model, we measure a strong wave attenuation $α\sim3.4$ Np/m. We found that the wave speed increases with the confining pressure with a $p^{1/2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源