论文标题

Zood:利用模型动物园进行分发概括

ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization

论文作者

Dong, Qishi, Muhammad, Awais, Zhou, Fengwei, Xie, Chuanlong, Hu, Tianyang, Yang, Yongxin, Bae, Sung-Ho, Li, Zhenguo

论文摘要

大规模预训练的最新进展表明,利用大量的预训练模型(PTM)来改善分布外(OOD)概括的巨大潜力,为此,其目标是在对多个训练领域进行微调后在可能的看不见的域上表现良好。但是,最大利用PTM的动物园是具有挑战性的,因为对PTM的所有可能组合进行微调是计算上的过度组合,而准确选择PTMS需要解决OOD任务的可能数据分布变化。在这项工作中,我们提出了Zood,这是PTMS排名和合奏的特征选择的范式。我们提出的指标通过量化PTM提取的特征的类别间可区分性和域间的稳定性来对PTM进行排名,以剩余的域外交叉验证方式提取的特征。然后将排名最高的模型用于目标OOD任务。为了避免累积模型集合引起的噪声,我们提出了一种有效的变分EM算法来选择信息性功能。我们评估了由35个模型组成的多种模型动物园的范例,该模型用于各种OOD任务,并证明:(i)模型排名与以前的方法相关,比以前的方法更好地相关,并且比Bruts force file-fickuning更快; (ii)模型集合之后的OOD概括具有特征选择的表现优于最新方法和最具挑战性的任务域内的准确性,从46.5 \%\%提高到50.6 \%。此外,我们在7个OOD数据集上提供了35个PTM的微调结果,希望帮助研究模型动物园和OOD泛化。代码将在https://gitee.com/mindspore/models/tree/master/research/cv/zood上找到。

Recent advances on large-scale pre-training have shown great potentials of leveraging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution (OoD) generalization, for which the goal is to perform well on possible unseen domains after fine-tuning on multiple training domains. However, maximally exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs is computationally prohibitive while accurate selection of PTMs requires tackling the possible data distribution shift for OoD tasks. In this work, we propose ZooD, a paradigm for PTMs ranking and ensemble with feature selection. Our proposed metric ranks PTMs by quantifying inter-class discriminability and inter-domain stability of the features extracted by the PTMs in a leave-one-domain-out cross-validation manner. The top-K ranked models are then aggregated for the target OoD task. To avoid accumulating noise induced by model ensemble, we propose an efficient variational EM algorithm to select informative features. We evaluate our paradigm on a diverse model zoo consisting of 35 models for various OoD tasks and demonstrate: (i) model ranking is better correlated with fine-tuning ranking than previous methods and up to 9859x faster than brute-force fine-tuning; (ii) OoD generalization after model ensemble with feature selection outperforms the state-of-the-art methods and the accuracy on most challenging task DomainNet is improved from 46.5\% to 50.6\%. Furthermore, we provide the fine-tuning results of 35 PTMs on 7 OoD datasets, hoping to help the research of model zoo and OoD generalization. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/zood.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源