论文标题

稀疏的Kronecker产品分解:图像回归中信号区域检测的一般框架

Sparse Kronecker Product Decomposition: A General Framework of Signal Region Detection in Image Regression

论文作者

Wu, Sanyou, Feng, Long

论文摘要

本文旨在在高分辨率和高阶图像回归问题中介绍第一个关于信号区域检测的常见框架。近年来,对图像数据和标态图像回归进行了深入研究。但是,大多数现有关于此类主题的研究都集中在结果预测上,而对图像区域检测的研究也相当有限,即使后者通常更为重要。在本文中,我们开发了一个名为Sparse Kronecker产品分解(SKPD)的通用框架,以解决此问题。 SKPD框架是一般的,因为它适用于矩阵(例如2D灰度图像)和(高阶)张量(例如2D彩色图像,Brain MRI/FMRI数据)代表图像数据。此外,与许多贝叶斯方法不同,我们的框架在高分辨率图像问题上在计算上是可扩展的。具体来说,我们的框架包括:1)单期SKPD; 2)多期SKPD; 3)非线性SKPD。我们提出了非convex优化问题,以估计单期和多项SKPD,并为非convex优化开发路径遵循算法。即使优化是非convex,也可以通过特别选择的初始化来保证,该算法的计算解决方案可以通过特别选择的初始化收敛。此外,一项和多期SKPD也可以保证区域检测一致性。非线性SKPD高度连接到浅卷积神经网络(CNN),尤其是CNN具有一个卷积层和一个完全连接的层。 SKPD的有效性通过英国生物银行数据库中的真实脑成像数据来验证。

This paper aims to present the first Frequentist framework on signal region detection in high-resolution and high-order image regression problems. Image data and scalar-on-image regression are intensively studied in recent years. However, most existing studies on such topics focused on outcome prediction, while the research on image region detection is rather limited, even though the latter is often more important. In this paper, we develop a general framework named Sparse Kronecker Product Decomposition (SKPD) to tackle this issue. The SKPD framework is general in the sense that it works for both matrices (e.g., 2D grayscale images) and (high-order) tensors (e.g., 2D colored images, brain MRI/fMRI data) represented image data. Moreover, unlike many Bayesian approaches, our framework is computationally scalable for high-resolution image problems. Specifically, our framework includes: 1) the one-term SKPD; 2) the multi-term SKPD; and 3) the nonlinear SKPD. We propose nonconvex optimization problems to estimate the one-term and multi-term SKPDs and develop path-following algorithms for the nonconvex optimization. The computed solutions of the path-following algorithm are guaranteed to converge to the truth with a particularly chosen initialization even though the optimization is nonconvex. Moreover, the region detection consistency could also be guaranteed by the one-term and multi-term SKPD. The nonlinear SKPD is highly connected to shallow convolutional neural networks (CNN), particular to CNN with one convolutional layer and one fully connected layer. Effectiveness of SKPDs is validated by real brain imaging data in the UK Biobank database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源