论文标题

AIM 2022挑战Instagram滤波器删除:方法和结果

AIM 2022 Challenge on Instagram Filter Removal: Methods and Results

论文作者

Kınlı, Furkan, Menteş, Sami, Özcan, Barış, Kıraç, Furkan, Timofte, Radu, Zuo, Yi, Wang, Zitao, Zhang, Xiaowen, Zhu, Yu, Li, Chenghua, Leng, Cong, Cheng, Jian, Liu, Shuai, Feng, Chaoyu, Bai, Furui, Wang, Xiaotao, Lei, Lei, Ma, Tianzhi, Gao, Zihan, He, Wenxin, Yeo, Woon-Ha, Oh, Wang-Taek, Kim, Young-Il, Ryu, Han-Cheol, He, Gang, Long, Shaoyi, Sharif, S. M. A., Naqvi, Rizwan Ali, Kim, Sungjun, Kim, Guisik, Lee, Seohyeon, Nathan, Sabari, Kansal, Priya

论文摘要

本文介绍了AIM 2022挑战Instagram滤波器删除的方法和结果。社交媒体过滤器通过连续的非线性操作转换图像,原始内容的特征图可能会插入到另一个领域。这降低了最近的深度学习策略的总体表现。这项挑战的主要目标是生产现实且视觉上合理的图像,在保留内容的同时,可以减轻应用过滤器的影响。相对于原始图像,所提出的解决方案根据PSNR值进行排名。关于这项任务的先前研究有两项作为基准,共有9支球队参加了挑战的最后阶段。本报告列出了拟议解决方案的定性结果和挑战基准的定性结果的比较。

This paper introduces the methods and the results of AIM 2022 challenge on Instagram Filter Removal. Social media filters transform the images by consecutive non-linear operations, and the feature maps of the original content may be interpolated into a different domain. This reduces the overall performance of the recent deep learning strategies. The main goal of this challenge is to produce realistic and visually plausible images where the impact of the filters applied is mitigated while preserving the content. The proposed solutions are ranked in terms of the PSNR value with respect to the original images. There are two prior studies on this task as the baseline, and a total of 9 teams have competed in the final phase of the challenge. The comparison of qualitative results of the proposed solutions and the benchmark for the challenge are presented in this report.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源