论文标题

$ k_1 $和$ k $ - 绝对矩阵订单单位空间

$K_1$ and $K$-groups of absolute matrix order unit spaces

论文作者

Kumar, Amit

论文摘要

在本文中,我们分别描述了Grothendieck组$ k_1(v)$和$ k(v)$的绝对矩阵订单单位空间$ v $分别用于单一和部分统一元素。为此,我们研究了统一和部分统一元素的一些基本特性,并定义了它们的路径同性恋等效性。 $ k(v)$的构建几乎以$ k_1(v)的方式遵循。$我们证明$ k_1(v)$和$ k(v)$是订购的阿贝利安集团。我们还证明,$ k_1(v)$和$ k(v)$是来自具有形态的绝对矩阵单位空间类别的函子,因为unital $ \ vert \ vert \ cdot \ cdot \ vert $ - 保留订单类的亚伯利亚组类别。稍后,我们表明,在某些条件下,$ k(v)$的商与$ k_0(v)$和$ k_1(v)的直接和$ k_0(v)$是订单预测的Grothendieck组。

In this paper, we describe the Grothendieck groups $K_1(V)$ and $K(V)$ of an absolute matrix order unit space $V$ for unitary and partial unitary elements respectively. For this purpose, we study some basic properties of unitary and partial unitary elements, and define their path homotopy equivalence. The construction of $K(V)$ follows in a almost similar manner as that of $K_1(V).$ We prove that $K_1(V)$ and $K(V)$ are ordered abelian groups. We also prove that $K_1(V)$ and $K(V)$ are functors from the category of absolute matrix order unit spaces with morphisms as unital completely $\vert \cdot \vert$-preserving maps to the category of ordered abelian groups. Later, we show that under certain conditions, quotient of $K(V)$ is isomorphic to the direct sum of $K_0(V)$ and $K_1(V),$ where $K_0(V)$ is the Grothendieck group for order projections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源