论文标题
三个高晶管离散正交多项式的三个家族的laguerre-freud方程
Laguerre-Freud Equations for three families of hypergeometrical discrete orthogonal polynomials
论文作者
论文摘要
对于超切碎类型的离散正交多项式,考虑到矩矩阵的cholesky分解。当权重的第一瞬间由$ {} _ 1f_2 $,$ {} _ 2f_2 $和$ {} _ 3f_2 $概括的超盖函数给出时,我们会得出laguerre-freud方程。
The Cholesky factorization of the moment matrix is considered for discrete orthogonal polynomials of hypergeometrical type. We derive the Laguerre-Freud equations when the first moments of the weights are given by the ${}_1F_2$, ${}_2F_2$ and ${}_3F_2$ generalized hypergeometrical functions.