论文标题

三个高晶管离散正交多项式的三个家族的laguerre-freud方程

Laguerre-Freud Equations for three families of hypergeometrical discrete orthogonal polynomials

论文作者

Fernández-Irisarri, Itsaso, Mañas, Manuel

论文摘要

对于超切碎类型的离散正交多项式,考虑到矩矩阵的cholesky分解。当权重的第一瞬间由$ {} _ 1f_2 $,$ {} _ 2f_2 $和$ {} _ 3f_2 $概括的超盖函数给出时,我们会得出laguerre-freud方程。

The Cholesky factorization of the moment matrix is considered for discrete orthogonal polynomials of hypergeometrical type. We derive the Laguerre-Freud equations when the first moments of the weights are given by the ${}_1F_2$, ${}_2F_2$ and ${}_3F_2$ generalized hypergeometrical functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源