论文标题

相应多频浮部su-schrieffer-heeger模型中的拓扑相变

Topological phase transition in commensurate multi-frequency Floquet Su-Schrieffer-Heeger model

论文作者

Olin, Sam, Lee, Wei-Cheng

论文摘要

最近,Floquet Systems通过调整外部时间周期驱动器来设计前所未有的能力来设计拓扑状态,因此引起了极大的兴趣。因此,寻求允许更多异国情调拓扑阶段和过渡的新驾驶方案对于Floquet工程师必须是必不可少的。在本文中,我们研究了由两个时间依赖的周期源驱动的Su-Schrieffer-Heeger模型,具有相应的频率和振幅调制。施加多个驾驶频率使我们能够实现由于傅立叶空间表示中出现的新耦合而产生的更多外来拓扑阶段。此外,我们通过改变相应源的振幅混合物来通过拓扑相变,从而通过实验实验的实用方法来扫描系统。在各种驾驶情况下,我们采用了当地的Chern Marker(Chern Number的真实空间表示)来模拟两驱动浮球哈密顿量的拓扑相图。

Recently, Floquet systems have attracted a great deal of interest as they offer unprecedented ability to engineer topological states through the tuning of an external time-periodic drive. Consequentially, seeking new driving protocols that allow for more exotic topological phases and transitions becomes imperative for the Floquet engineer. In this paper, we study the Su-Schrieffer-Heeger model driven by two time-dependent periodic sources with commensurate frequencies and an amplitude modulation. Imposing more than one driving frequency allows us to realize even more exotic topological phases resulting from new couplings appearing in the Fourier space representation. Moreover, we find an experimentally practical method for sweeping the system through a topological phase transition by varying the amplitude mixture of the commensurate sources. We employ the local Chern marker, a real space representation of the Chern number, to simulate topological phase diagrams of the two-drive Floquet Hamiltonian in a variety of driving cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源