论文标题

图形最小特征值的下限和coopiahedron图的应用

A lower bound for the smallest eigenvalue of a graph and an application to the associahedron graph

论文作者

Cioabă, Sebastian M., Gupta, Vishal

论文摘要

在本文中,我们获得了一个常规图的最小特征值的下限,其中包含许多较小固定子图的副本。这概括了Aharoni,Alon和Berger的结果,其中子图是三角形。我们应用结果以获得在AssociaHedron图的最小特征值上的下限,并证明该结合给出了此特征值的正确数量级。我们还调查了有关AssociaHedron图的第二大特征值已知的。

In this paper, we obtain a lower bound for the smallest eigenvalue of a regular graph containing many copies of a smaller fixed subgraph. This generalizes a result of Aharoni, Alon, and Berger in which the subgraph is a triangle. We apply our results to obtain a lower bound on the smallest eigenvalue of the associahedron graph, and we prove that this bound gives the correct order of magnitude of this eigenvalue. We also survey what is known regarding the second-largest eigenvalue of the associahedron graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源