论文标题
图形最小特征值的下限和coopiahedron图的应用
A lower bound for the smallest eigenvalue of a graph and an application to the associahedron graph
论文作者
论文摘要
在本文中,我们获得了一个常规图的最小特征值的下限,其中包含许多较小固定子图的副本。这概括了Aharoni,Alon和Berger的结果,其中子图是三角形。我们应用结果以获得在AssociaHedron图的最小特征值上的下限,并证明该结合给出了此特征值的正确数量级。我们还调查了有关AssociaHedron图的第二大特征值已知的。
In this paper, we obtain a lower bound for the smallest eigenvalue of a regular graph containing many copies of a smaller fixed subgraph. This generalizes a result of Aharoni, Alon, and Berger in which the subgraph is a triangle. We apply our results to obtain a lower bound on the smallest eigenvalue of the associahedron graph, and we prove that this bound gives the correct order of magnitude of this eigenvalue. We also survey what is known regarding the second-largest eigenvalue of the associahedron graph.