论文标题
摩尔斯 - 摩尔 - 男性差异的特征空间在表面上
Characteristic space of orbits of Morse-Smale diffeomorphisms on surfaces
论文作者
论文摘要
动力学系统研究的经典方法包括以“源 - 链”的形式代表系统的动力学,这意味着识别吸引者培训对,它们是系统的所有其他轨迹的吸引子固定集。如果有一种方法可以选择这对,以便连接其补充中的空间轨道(轨道的特征空间),则可以创建前提条件,以找到动态系统的完整拓扑不变。众所周知,这种对的摩尔斯 - 摩尔 - 摩尔分歧差总是存在于尺寸$ n \ geqslant 3 $上的任意摩尔斯 - 摩尔分歧。而对于$ n = 2 $,已证明存在连接的特征空间仅用于定向梯度样(无异性点)的差异性,而在可定向表面上定义了差异。在目前的工作中,建设性地表明,违反了上述至少一种条件(缺乏异质点,表面的可方向性,差异性的可方向性)会导致在表面上存在摩尔斯 - 男子摩尔 - 男性差异性的差异性,这些表面上没有具有连接范围的旋风范围。
The classical approach to the study of dynamical systems consists in representing the dynamics of the system in the form of a "source-sink", that means identifying an attractor-repeller pair, which are attractor-repellent sets for all other trajectories of the system. If there is a way to choose this pair so that the space orbits in its complement (the characteristic space of orbits) is connected, this creates prerequisites for finding complete topological invariants of the dynamical system. It is known that such a pair always exists for arbitrary Morse-Smale diffeomorphisms given on any manifolds of dimension $n \geqslant 3$. Whereas for $n=2$ the existence of a connected characteristic space has been proved only for orientation-preserving gradient-like (without heteroclinic points) diffeomorphisms defined on an orientable surface. In the present work, it is constructively shown that the violation of at least one of the above conditions (absence of heteroclinic points, orientability of a surface, orientability of a diffeomorphism) leads to the existence of Morse-Smale diffeomorphisms on surfaces that do not have a connected characteristic space of orbits.