论文标题
验证:省略检查模型的模型弹性与恶意模型持有人
VerifyML: Obliviously Checking Model Fairness Resilient to Malicious Model Holder
论文作者
论文摘要
在本文中,我们介绍了验证,这是第一个检查给定机器学习(ML)模型公平程度的安全推理框架。验证是通用的,并且在验证过程中对恶意模型持有人的任何障碍物免疫。我们依靠安全的两党计算(2PC)技术来实现验证,并仔细自定义了一系列优化方法,以提高其对线性和非线性层执行的性能。具体而言,(1)验证允许绝大多数开销脱机,从而满足在线推断的低延迟要求。 (2)为了加快离线准备,我们首先设计了新颖的同构平行计算技术,以加速身份验证的海狸的三重(包括矩阵 - 矢量和卷积三元)生成过程。与最先进的工作相比,它最多可实现高达$ 1.7 \ times $计算加速度,并获得至少$ 10.7 \ times $ $少的通信开销。 (3)我们还提出了一种新的加密协议,以评估非线性层的激活功能,即$ 4 \ times $ - $ 42 \ times $ $ $,$> 48 \ times $ $比现有的2pc times times $少于针对恶意党的2pc协议。实际上,验证甚至击败了最先进的半honest ML安全推理系统!我们为验证安全性提供了正式的理论分析,并证明了其在包括Resnet-18和Lenet在内的主流ML模型上的性能优势。
In this paper, we present VerifyML, the first secure inference framework to check the fairness degree of a given Machine learning (ML) model. VerifyML is generic and is immune to any obstruction by the malicious model holder during the verification process. We rely on secure two-party computation (2PC) technology to implement VerifyML, and carefully customize a series of optimization methods to boost its performance for both linear and nonlinear layer execution. Specifically, (1) VerifyML allows the vast majority of the overhead to be performed offline, thus meeting the low latency requirements for online inference. (2) To speed up offline preparation, we first design novel homomorphic parallel computing techniques to accelerate the authenticated Beaver's triple (including matrix-vector and convolution triples) generation procedure. It achieves up to $1.7\times$ computation speedup and gains at least $10.7\times$ less communication overhead compared to state-of-the-art work. (3) We also present a new cryptographic protocol to evaluate the activation functions of non-linear layers, which is $4\times$--$42\times$ faster and has $>48\times$ lesser communication than existing 2PC protocol against malicious parties. In fact, VerifyML even beats the state-of-the-art semi-honest ML secure inference system! We provide formal theoretical analysis for VerifyML security and demonstrate its performance superiority on mainstream ML models including ResNet-18 and LeNet.