论文标题

基于模块化机器学习的弹性性:在有限数据的背景下的概括

Modular machine learning-based elastoplasticity: generalization in the context of limited data

论文作者

Fuhg, Jan N., Hamel, Craig M., Johnson, Kyle, Jones, Reese, Bouklas, Nikolaos

论文摘要

在计算固体力学中,开发经过路径依赖过程的材料的准确构成模型仍然是一个复杂的挑战。从考虑适当的模型假设和数据可用性,验证和验证的角度来考虑适当的模型假设时会出现挑战。最近,已经提出了数据驱动的建模方法,旨在建立应力进化法律,以避免通过机器学习表示和算法来避免用户选择的功能形式。但是,这些方法不仅需要大量的数据,而且还需要数据,这些数据可以通过各种复杂的加载路径来探测全部应力空间。此外,它们很少将所有必要的热力学原理作为硬性约束。因此,它们尤其不适合低数据或有限数据制度,其中首先是源于获得数据的成本,而后者是由于获得标记的数据的实验限制,这在工程应用程序中通常是这种情况。在这项工作中,我们讨论了一个混合框架,该框架可以通过依赖弹性性表述的模块化来对可变的数据进行工作,其中可以选择模型的每个组件作为经典现象学或数据驱动的模型,取决于可用信息的量和响应的复杂性。该方法对来自模拟的合成单轴数据以及结构材料的循环实验数据进行了测试。发现发现的材料模型不仅可以很好地插值,而且还可以以热力学一致的方式准确地外推,远远超出训练数据的域。讨论和分析了将这些模型实施到有限元模拟中的培训方面和细节。

The development of accurate constitutive models for materials that undergo path-dependent processes continues to be a complex challenge in computational solid mechanics. Challenges arise both in considering the appropriate model assumptions and from the viewpoint of data availability, verification, and validation. Recently, data-driven modeling approaches have been proposed that aim to establish stress-evolution laws that avoid user-chosen functional forms by relying on machine learning representations and algorithms. However, these approaches not only require a significant amount of data but also need data that probes the full stress space with a variety of complex loading paths. Furthermore, they rarely enforce all necessary thermodynamic principles as hard constraints. Hence, they are in particular not suitable for low-data or limited-data regimes, where the first arises from the cost of obtaining the data and the latter from the experimental limitations of obtaining labeled data, which is commonly the case in engineering applications. In this work, we discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation where each component of the model can be chosen to be either a classical phenomenological or a data-driven model depending on the amount of available information and the complexity of the response. The method is tested on synthetic uniaxial data coming from simulations as well as cyclic experimental data for structural materials. The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data. Training aspects and details of the implementation of these models into Finite Element simulations are discussed and analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源