论文标题
神经反馈循环的落后可及性的混合分配策略
A Hybrid Partitioning Strategy for Backward Reachability of Neural Feedback Loops
论文作者
论文摘要
随着神经网络变得更加集成到我们依靠用于运输,医学和安全性的系统中,我们开发了分析其行为的方法变得越来越重要,以确保它们在这些情况下可以安全使用。本文中使用的方法旨在使用向后的可及性分析来证明具有神经网络控制器(即神经反馈循环)的闭环系统的安全性。也就是说,我们计算了反向投影(BP)集过度评估(BPOAS),即导致给定目标集的一组状态,该目标集限制了状态空间的危险区域。然后,可以通过检查其当前状态对BPOAS进行认证。虽然过度x型BP的速度明显比计算精确的BP集的速度要快得多,但解决了放松的问题会导致保守性。为了打击保守性,可以使用分区策略将问题拆分为一组子问题,每个问题都比未分区的问题不保守。我们引入了一种混合分区方法,该方法同时使用目标设置分区(TSP)和可抵制设置分区(BRSP)来克服使用BRSP时存在的估计误差的下限。数值结果表明,与BRSP或TSP相比,给定相同的计算时间相比,估计误差几乎降低了。
As neural networks become more integrated into the systems that we depend on for transportation, medicine, and security, it becomes increasingly important that we develop methods to analyze their behavior to ensure that they are safe to use within these contexts. The methods used in this paper seek to certify safety for closed-loop systems with neural network controllers, i.e., neural feedback loops, using backward reachability analysis. Namely, we calculate backprojection (BP) set over-approximations (BPOAs), i.e., sets of states that lead to a given target set that bounds dangerous regions of the state space. The system's safety can then be certified by checking its current state against the BPOAs. While over-approximating BPs is significantly faster than calculating exact BP sets, solving the relaxed problem leads to conservativeness. To combat conservativeness, partitioning strategies can be used to split the problem into a set of sub-problems, each less conservative than the unpartitioned problem. We introduce a hybrid partitioning method that uses both target set partitioning (TSP) and backreachable set partitioning (BRSP) to overcome a lower bound on estimation error that is present when using BRSP. Numerical results demonstrate a near order-of-magnitude reduction in estimation error compared to BRSP or TSP given the same computation time.