论文标题

培训语音情感分类器没有分类注释

Training speech emotion classifier without categorical annotations

论文作者

Shamsi, Meysam, Tahon, Marie

论文摘要

情绪表示,分类标签和连续空间中的维度描述有两个范式。因此,情绪识别任务可以视为分类或回归。这项研究的主要目的是研究这两种表示之间的关系,并提出仅使用尺寸注释的分类管道。所提出的方法包含一个回归模型,该模型经过训练,可以预测给定语音音频的尺寸表示中连续值的向量。该模型的输出可以使用映射算法解释为情感类别。我们研究了两个不同的语料库中三个功能提取器,三个神经网络架构和三种映射算法的组合的性能。我们的研究显示了通过回归方法的分类的优势和局限性。

There are two paradigms of emotion representation, categorical labeling and dimensional description in continuous space. Therefore, the emotion recognition task can be treated as a classification or regression. The main aim of this study is to investigate the relation between these two representations and propose a classification pipeline that uses only dimensional annotation. The proposed approach contains a regressor model which is trained to predict a vector of continuous values in dimensional representation for given speech audio. The output of this model can be interpreted as an emotional category using a mapping algorithm. We investigated the performances of a combination of three feature extractors, three neural network architectures, and three mapping algorithms on two different corpora. Our study shows the advantages and limitations of the classification via regression approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源