论文标题

Shine:subhypergraph entuctive神经网络

SHINE: SubHypergraph Inductive Neural nEtwork

论文作者

Luo, Yuan

论文摘要

HyperGraph神经网络可以对图的节点之间的多路连接进行建模,这些连接在诸如遗传医学等现实世界中很常见。特别是,遗传途径或基因集编码由多个基因驱动的分子函数,自然表示为超增强。因此,超图引导的嵌入可以捕获学习表示的功能关系。现有的HyperGraph神经网络模型通常集中于节点级或图形级推断。在现实世界应用程序中学习超图的强大表示强大的表示,有未满足的需求。例如,可以将癌症患者视为具有患者突变的基因的子图,而所有基因都通过与代表特定分子功能的途径相对应的超系统连接。为了进行准确的电感子图预测,我们提出了亚透析电感电感神经网络(Shine)。 Shine使用信息丰富的遗传途径,将分子函数编码为超增强,以将基因连接为节点。 Shine共同优化了端到端子图分类的目标和超图节点的相似性正则化。 Shine同时使用强烈的双重关注信息传递来学习基因和途径的表示。学习的表示形式通过子图的注意层汇总,并用于训练多层感知器进行电感子图推理。我们使用大型NGS和策划的数据集对各种最先进的图形神经网络,XGBoost,NMF和多基因风险分数模型进行了评估。 Shine的表现胜过所有比较模型,并产生了具有功能见解的可解释疾病模型。

Hypergraph neural networks can model multi-way connections among nodes of the graphs, which are common in real-world applications such as genetic medicine. In particular, genetic pathways or gene sets encode molecular functions driven by multiple genes, naturally represented as hyperedges. Thus, hypergraph-guided embedding can capture functional relations in learned representations. Existing hypergraph neural network models often focus on node-level or graph-level inference. There is an unmet need in learning powerful representations of subgraphs of hypergraphs in real-world applications. For example, a cancer patient can be viewed as a subgraph of genes harboring mutations in the patient, while all the genes are connected by hyperedges that correspond to pathways representing specific molecular functions. For accurate inductive subgraph prediction, we propose SubHypergraph Inductive Neural nEtwork (SHINE). SHINE uses informative genetic pathways that encode molecular functions as hyperedges to connect genes as nodes. SHINE jointly optimizes the objectives of end-to-end subgraph classification and hypergraph nodes' similarity regularization. SHINE simultaneously learns representations for both genes and pathways using strongly dual attention message passing. The learned representations are aggregated via a subgraph attention layer and used to train a multilayer perceptron for inductive subgraph inferencing. We evaluated SHINE against a wide array of state-of-the-art (hyper)graph neural networks, XGBoost, NMF and polygenic risk score models, using large scale NGS and curated datasets. SHINE outperformed all comparison models significantly, and yielded interpretable disease models with functional insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源