论文标题

涉及谐波数字的汇总系列

Series with summands involving harmonic numbers

论文作者

Sun, Zhi-Wei

论文摘要

对于每个正整数$ m $,$ m $ th订单谐波数字由$$ h_n^{(m)} = \ sum_ {0 <k \ le n} \ frac1 {k^m} \ \(n = 0,1,1,2,\ ldots)。例如,我们猜测$$ \ sum_ {k = 0}^\ infty(6k+1)\ frac {\ binom {\ binom {2k} k^3} {256^k} \ left(h_ {2k}^{2K}^{(3)}} - } - \ frac {7} - {7} {64} {64} {64} {64} {64} {{64} {{64} {{{64} {{{64} {{64}} = \ frac {25ζ(3)} {8π} -g,$ g $ the $ g $表示加泰罗尼亚常数$ \ sum_ {k = 0}^\ infty(-1)^k/(2k+1)^2 $。本文包含$ 70 $的猜想,由作者在2022--2023期间提出。

For each positive integer $m$, the $m$th order harmonic numbers are given by $$H_n^{(m)}=\sum_{0<k\le n}\frac1{k^m}\ \ (n=0,1,2,\ldots).$$ We discover exact values of some series involving harmonic numbers of order not exceeding four. For example, we conjecture that $$\sum_{k=0}^\infty(6k+1)\frac{\binom{2k}k^3}{256^k}\left(H_{2k}^{(3)}-\frac{7}{64}H_{k}^{(3)}\right) =\frac{25ζ(3)}{8π}-G,$$ where $G$ denotes the Catalan constant $\sum_{k=0}^\infty(-1)^k/(2k+1)^2$. This paper contains $70$ conjectures posed by the author during 2022--2023.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源